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Graph Drawing e 
tecniche algoritmiche avanzate

Giuseppe Di Battista
Maurizio Patrignani

programma
• vengono introdotte alcune tecniche

algoritmiche e viene discussa la loro
applicazione al graph drawing

– introduzione al graph drawing
– divide and conquer
– come trovare una struttura dove una struttura

non c’è (dfs e planarità)
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grafo:
nodi: A,B,C,D
archi: (A,B),(A,C),

(A,D),(B,C),
(B,D),(C,D)

?
D

A

C

B

graph drawing e basi di dati
• per visualizzare schemi ER
• per visualizzare risposte ad interrogazioni
• nella integrazione di schemi
• nel reverse engineering
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graph drawing e …
• project planning (pert)
• analisi delle funzioni (data flow diagrams)
• analisi organizzativa (organization chart)
• …

ptolomaeus
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drawings of graphs

mappe di siti web
prodotte da tool automatici

• microsoft, siteserver (backoffice)
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mappe di siti web
prodotte da tool automatici

• site manager, astra

a session with hermes
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polyline straight-line

orthogonal polyline grid

planar polyline strictly upward planar polyline
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minimum number
of bends

minimum number of crossings
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algorithm: Layered-Tree-Draw
input: a binary tree T
output: a layered drawing of T

base case: if T consists of a single vertex, its drawing is 
trivially defined

divide: recursively apply the algorithm to draw the left and 
right subtrees of T

conquer: imagine that each subtree is drawn on a separate 
sheet of paper;  move the drawings of the subtrees towards 
each other until their horizontal distance becomes equal to 
2; place the root r of T vertically one unit above and 
horizontally half way between its   children;  if r has only 
one subtree, say the left one, then place r at horizontal 
distance 1 to the right of its left child.
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implementing Layered-Tree-Draw
two traversals of T

1. a postorder traversal recursively computes for each vertex 
v, the horizontal displacement of the left and right children 
of v with respect to v

2. a preorder traversal computes the x-coordinates of the 
vertices by accumulating the displacements on the path 
from each vertex to the root, and the y-coordinates of the 
vertices by determining the depth of each vertex

special care is needed in order to implement the postorder
traversal so that it runs in linear time
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left

right

-1
+1

left right

-3 +3
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dopo la visita in postordine

-3 +3
+1-1+1-1

+1-1 +1-1
+1-1

dopo la visita in postordine

-3 +3
+1-1+1-1

+1-1 +1-1
+1-1

dopo la visita in preordine

-3 +3
+4+2-2-4

-1-3 +3+1
+4-4

0
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implementing Layered-Tree-Draw
the postorder traversal

the left contour of a binary tree T with height h is the 
sequence of vertices v0… vh, such that vi is the leftmost 
vertex of T with depth i

the right contour is defined similarly

in the conquer step, we follow the right contour of the left 
subtree and the left contour of the right subtree

in the postorder traversal, we maintain the invariant that after 
completing the processing of a vertex v, the left and right 
contours of the subtree rooted at v are stored in linked lists

left and right contours

right contour left contour
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implementing Layered-Tree-Draw
the postorder traversal

processing v in the postorder traversal is done by 
scanning the right contour of the left subtree of v
(following the recursively computed right contour 
list) and the left contour of the right subtree of v
(following the recursively computed left contour list)

during the scan we accumulate the displacements of 
the vertices encountered on the left and right 
contours and we keep track of the maximum 
cumulative displacement at any depth

implementing Layered-Tree-Draw
the postorder traversal

let T(v) be the subtree rooted at v, and T’ and T’’ be the left and right 
subtrees of v

the left and right contour list of T(v) can be constructed:

• if T’ and T’’ have the same height, then the left contour list of T(v) is 
the same as the left contour list of T’ plus vertex v, and the right contour 
list of T(v) is the same as the right contour list of T’’ plus v

• if the height of T’ is less than the height of T’’, the right contour list of 
T(v) is the same as the right contour list of T’’; let h’ be the height of T’ 
and let u be the bottommost vertex of the left contour of T’; let w be the 
vertex of the left contour of T’’ such that w has depth h’+1 in T’’; the 
left contour list of T(v) consists of the concatenation of vertex v, the left 
contour list of T’, and the portion of the left contour list of T’’ 
beginning at vertex w
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implementing Layered-Tree-Draw
efficiency

a crucial observation to prove the efficiency of the algorithm:

it is necessary to travel down the contours of T’ and T’’ only as far 
as the height of the subtree of lesser height

the time spent processing vertex v in the postorder traversal is 
proportional to the minimum of the heights of T’ and T’’

the running time of the postorder traversal of tree T is given by the 
following formula, where for a vertex v of T, we denote the height of the 
left subtree of v by h’(v) and the height of the right subtree of v by h’’(v):

Σv∈T (1+min{h’(v), h’’(v)}) =
= n + Σv∈T min{h’(v),h’’(v)}
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implementing Layered-Tree-Draw
efficiency

we can visualize the sum Σv∈T min{h’(v),h’’(v)} by 
connecting with new edges pairs of consecutive vertices with 
the same depth

the sum over all vertices v of the minimum height of the 
subtrees of v is equal to the number of new edges added to the 
tree

each vertex is incident to at most one new edge on its right

the number of new edges, and therefore the above sum, is no 
more than the number of vertices of the tree
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implementing Layered-Tree-Draw
conclusions

if T is a binary tree with n vertices, Layered-Tree-Draw 
constructs in O(n) time a drawing Γ of T such that:

– Γ is layered, planar, straight-line, strictly downward
– Γ is embedding-preserving (the left-to-right order of the children of 

each vertex is preserved)
– any two vertices of Γ are at horizontal and vertical distance at least 

1
– the area of Γ is O(n2)
– the x-coordinate of a parent with two children is the average of the 

x-coordinates of its children
– simply isomorphic subtrees have congruent drawings, up to a 

translation
– axially isomorphic subtrees have congruent drawings, up to a 

translation and a reflection around the y-axis
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