Typical Web server
architecture

browser

:

|Web|

internet

v
HTTP

/' server

: \\\ .. DBMS
“ html, gif, lT‘ :
jpeg, ... files programs

DB

Web and Databases:

classification of architectural solutions

Web/DB
Interfaces
[|
Server-Side Client-Side
Solutions Solutions
\ \ \ \
Java CGl 2-layers HTTP Browser External
Servlet cal Server API Extensions || Applications

Paolo Merialdo

Paolo Merialdo

Web and Databases:
layers

User
Interface

Application
Layer

\ DB Connector Layer \

. DBMS

S —

Web Browser

0 Netscape Navigator
0 Microsoft Internet Explorer
O...

Paolo Merialdo

Server HTTP

0 Netscape Enterprise Server

0 Microsoft Internet Information Server
0 NCSA

0 Apache

0 AOL

O...

Gateway

0 ODBC

0 JDBC

0 TCP Socket

0 Proprietary protocols (e.g. Oracle SQL*Net)

Web Server Architecture:
Common Gateway Interface (CGl)

Web
Browser

| Server HTTP |

\ Cal Pl"ogram \

ODBC | | DBMS API

DBMS
Database

Weaving the Web
NAME E-MAIL ROOM| ...
Paolo Atzeni atzeni@dia.uniroma3.it 213
Gianni Mecca mecca@dia.uniroma3.it 212
ProfListPage
ProfPage
ProfList h
Name = Name =
ToProf ¢ E-Mail =
Room =
e —

Paolo Merialdo

Paolo Merialdo

Weaving the Web
by CGl-programs (ProfListPage)

main() {
char ProfName[20];
$OPEN CONNECTION(DeptDB);
$DECLARE ProfCursor CURSOR FOR
SELECT Name
FROM ProfTable;
$OPEN ProfCursor;
$FETCH ProfCursor INTO :ProfName;
printf("<HTML> ...<BODY ...");
printf("");
while (sglcode==0) {
printf(" %s ",
ProfName,ProfName);
$FETCH ProfCursor INTO :ProfName;

}
$CLOSE CURSOR ProfCursor;
printf(" ... </BODY></HTML>");
$CLOSE CONNECTION(DeptDB);
}

Weaving the Web
by CGl-programs (ProfPage)

main(int argc, *char argv[]) {
char Name[20], Email[20], Room[20];
$OPEN CONNECTION(DeptDB);
$DECLARE ProfCursor CURSOR FOR
SELECT *
FROM ProfTable
WHERE Name = argv[1]
$OPEN ProfCursor
$FETCH ProfCursor INTO :Name, :Email, :Room;
printf(" <HTML> ...<BODY ... ");
printf(" %s ",Name);
printf("
E-mail: <I> %s </I> ",Email);
printf("
Room: %s ",Room);
$CLOSE CURSOR ProfCursor;
printf(" ... </BODY></HTML>");
$CLOSE CONNECTION(DeptDB);

}

Paolo Merialdo

CGl Problems

0 Programming
0 Portability

0 Performance

O Maintenance

Portability

0 Changing platform imposes to
re-compile source code

0 Changing DBMS imposes to update
DBMS accesses and to re-compile
source code

O Interpreted languages (e.g. Perl, TCL,
etc.) and standard DBMS connectors
(e.g. ODBC) partially solve the problem

Paolo Merialdo

Performance

0 Each access needs:
—to load a program in main memory
—to open a new connection with DBMS
— to execute a (bunch of) query
— to close the connection

O then
—the DBMS is overloaded
—the O.S. is overloaded

Maintenance

0 Presentation is encoded into source
code

0 Hypertext structure is encoded into
source code

0 Data access is encoded into source
code

Paolo Merialdo

Web Server Architecture:
HTTP Server API

Web
Browser
\
Server HTTP
API
Application

. ODBC | | DBMS APl |

DBMS
Database

HTTP Server API:
main features

0 It is possible to establish direct and
continuous connections between the DBMS
and the HTTP Server

0 It is possible to maintain connections
throughout Web applications as well as
across invocations of Web applications

0 Since the database connections are
continuous, applications don’t experience the
overhead of a connect and subsequent
disconnect from the database

0 Use specific languages for CGI programs

Paolo Merialdo

Web Server Architecture:
HTTP Server API

0 Advantages

— Applications are built "within" the HTTP
server by means of specific APIs

— Persistent applications
0 Disadvantages
— Portability

Web Server Architecture:
2-layers CGl

Web

Browser
\

Server HTTP
API

| "Thin CGI" |

”CGlPartner " \

. OoDBC | | DBMS APl |

DBMS
Database

Paolo Merialdo

Web Server Architecture:
2-layers CGl

0 Each client request activates the execution of
a ThinCGl

0 ThinCGls generate a session Id and
communicate the request to the CGIPartner

0 CGIPartner is a demon, with a pool of open
connections to the DBMS

0 CGIPartner queries the database, format
query’s results, and give them back to a
ThinCGl, which ends the process sending the
results to the clients

Web Server Architecture:
2-layers CGl

0 Main Advantages

— (Each) CGlPartner offers a pool of open DBMS
connections

— (Each) CGIPartner can manage multiple requests

— ThinCGils are “thin” applications: their execution
doesn’t overload the O.S.

— Session Id can be used to manage connections
with the client

0 Disadvantages
— ODBC is a bottleneck !

— This approach is effective when the DBMS
connection is through DBMS vendors API

10

Paolo Merialdo

Web Server Architecture:
Java Servlet

Web
Browser
\

Server HTTP
API

\ Servlet \

| JDBC |
[

DBMS
Database

Java Servlet

0 protocol and platform-independent
server side components

0 do not require creation of a new process
for each request

0 allows for three tier applications

11

Paolo Merialdo

Client side solutions: browser
extensions

Browser Web

Extension Browser
\

" Server HTTP |

JDBC || SocketTCP |

DBMS
Database

Client side solutions: browser
extensions

0 Products:
—Java Applets
— Netscape Plug-Ins
— Microsoft ActiveX
— Netscape JavaScript

12

Paolo Merialdo

Client side solutions: browser
extensions

0 Advantages
— allow to manage data entry
—easy to use
— flexible
0 Disadvantages
— software updates
— overload clients

Web Server with client side
solutions: external apps

Web

Browser Helper
\

Server HTTP |

| JDBC | Socket TCP

DBMS
Database

13

Paolo Merialdo

Web Server with client side
solutions: external apps

0 Examples
— MS Word-Excel-...
— Terminal emulators

Web Server with client side
solutions: external apps

0 Advantages
— may be useful for proprietary solutions
— audit and security
0 Disadvantages
— software updates
— process control

14

Paolo Merialdo

Databases and information systems
over the Web: a great opportunity

0 Outline
— Introduction

— Web-based information systems: a
database perspective

— Architectures
—Tools and techniques
— The Web evolution: XML

Tools and techniques for
developing WBIS

0 Push and puli
0 Managing sessions
0 Market solutions

[1 (architectures)

[languages
[tools

0 Research Proposals

15

Paolo Merialdo

Push and pull

o The "pull” approach
— generate pages dynamically
0 The "push" approach
— materialize pages (in text files)

The pull approach

o Advantages
- pages are always up to date
- easy maintenance
0 Disadvantages
- increases the DBMS overload (but recent
architectures seem to be able to overcome
the problem)

- portability (but Java servlets ...)
0 Main features

- supported by most of the tools available on
the market

16

Paolo Merialdo

The push approach

o Advantages
- portability
- reduces the DBMS overload (if any)
0 Disadvantages
- needs techniques to maintain consistency
between database and hypertext

0 Main features
- needs a mechanism for URL invention

Web Server:
push approach

Web
Browser

" Server HTTP |

| HTML Files
\ HTML Generator \

ODBC | DBMS API |

DBMS
Database

17

Paolo Merialdo

Materializing Page-schemes
(ProfListPage)

main() {
char ProfName[20], Fname[20];
FILE *fp;
strcpy(GenerateURL("ProfListPage"), Fname);
fp= fopen(Fname, "w");
$OPEN CONNECTION(DeptDB);
$DECLARE ProfCursor CURSOR FOR
SELECT Name
FROM ProfTable;
$OPEN ProfCursor;
$FETCH ProfCursor INTO :ProfName;
fprintf(fname, "<HTML> ...<BODY ... ");
while (sglcode==0) {
fprintf(fname, " %s ",
GenerateURL(ProfName), ProfName);
$FETCH ProfCursor INTO :ProfName;

}
$CLOSE CURSOR ProfCursor;
fprintf(fname, " ... </BODY></HTML>");
$CLOSE CONNECTION(DeptDB);
}

Materializing Page-schemes
(ProfPage)

main() {
char ProfName[20], Email[20], Room[20], Fhame[20];
FILE *fp;
$OPEN CONNECTION(DeptDB);
$DECLARE ProfCursor CURSOR FOR
SELECT *
FROM ProfTable
$OPEN ProfCursor
$FETCH ProfCursor INTO :ProfName, :Email, :Room;
while (sglcode==0) {

sprintf(Fname, "/ProfPage/%s”, GenerateURL("ProfName"));

fp= fopen(Fname, "w");
fprintf(Fname, "<HTML> ...<BODY> ... ");
fprintf(Fname, " %s ",ProfName);
fprintf(Fname, "
E-mail: <I> %s </I>",Email);
fprintf(Fname, "
Room: %s ",Room);
fprintf(" ... </BODY></HTML>");

$FETCH ProfCursor INTO :ProfName, :Email, :Room;

}
$CLOSE CURSOR ProfCursor;
%CLOSE CONNECTION(DeptDB);

18

Paolo Merialdo

Managing Sessions

0 Browser session: a sequence of related
requests from a particular user to a
particular application

0 The HTTP protocol is stateless

0 It cannot manage a sequence of
requests

Managing Sessions:
Examples

0 E-Commerce applications
0 Educational applications
O...

— shopping baskets

— user navigation track
— user-customized presentation

19

Paolo Merialdo

Managing sessions:
techniques

0 A “token” is used to represent the
session

0 the token is passed between browser
and server as:
— part of the URL
— hidden field in a form
— cookie

Session Management

0 Session initialization

— the browser accesses an initialization page
(e.g. alogin form) able to launch an init
program on the server

— the init program generates a session id

0 Session Id transmission

— a page containing the session id is sent
back to the browser

— every further request will contain the
session id

20

Paolo Merialdo

Managing sessions and

conversations
Browser Server Application
S * Conversation
e <
S
S
| <
0
n
< Conversation

Managing sessions and

conversations

Browser Server Application

A C

Session | | p 0

n

< Vv

e

r

> S

Session ?

. 0

< v n

21

Paolo Merialdo

Cookies

Web Server www.ai.it

Browser — 4

v

Exec: Set-Cookie(
name=pippo
expires=31-12-1999

2
| e | domain=www.db.com
cookie path=/products
id=12as122)

0 |Web Server www.db.it
cookie

Cookies

— Name: cookie name
— Expires: expiration date

— Domain: domain where to cookie has to be
sent

— Path: path where the cookie has to be sent

— Secure: indicates that the cookie can be
transmitted only through SSL

— Other Information (<4Kk): application data

22

Paolo Merialdo

Market Solutions

0 Languages
o HTML Extensions
1 4GL Extensions
0 Tools
o Tools to support the implementation
o Tools to support design activities

Languages

0 HTML Extensions

0 4GL Extensions

o add specialized functions to a 4GL

o the result of a program execution is HTML
code

23

Paolo Merialdo

HTML Extensions

0 Microsoft Active Server Page (ASP)

0 Java Server Page

0 Microsoft Internet Database
Connector (IDC)

0 Allaire Inc. Cold Fusion
0 Sybase Web.SQL
O e

HTML Templates: Example
(source Sybase)

TEMPLATE: WORK- LI ST

<HTM_>
<BODY BGCOLOR="WHI TE">

<SYB TYPE=SQL> _ _
SELECT | name, fnane, title, price
FROM authors a,
titleauthor ta,
titles t
WHERE (a.id = ta.id))
and t.title id = ta.title_id)
</ SYS>

</ BODY>
</ HTM.>

24

Paolo Merialdo

HTML Templates:
Architecture

Browser Request:
Itpl-int?TPLName=Work-List

_ JTemplate DBMS

Interpreter I

>
Templates u

l‘

Languages

0 HTML Extensions
o embed SQL statement in specific HTML
tags
o Writing page templates becomes an
implementation paradigm

0 4GL Extensions
o add specialized functions to a 4GL
o the result of a program execution is HTML
code

25

Paolo Merialdo

4GL Extensions

0 IBM Net.Data

0 Oracle PL/SQL Web/Toolkit
0 Informix Web Datablade
O...

4GL Extensions: Example
(source Informix)

CREATE FUNCTION ArtistPage(text) RETURN TEXT
AS
SELECT UNIQUE
"<TABLE WIDTH=100%><TR>
<TD><IMG SRC=Wehdriver?LO=" ||
logo::text || "&Type="image/gif” " ||
"
"||
" || name || "</[STRONG>"
<P>Birth:" || birth || "</[EM>
" ||
<P>Death: "||death||" </[EM><TD>
<TD ALIGN=LEFT><P>" ||biography ||
" </TD></TR></TABLE><P>"
FROM ArtistTable
WHERE Name LIKE $$1

26

Paolo Merialdo

4GL Extensions: Example
(results)

<TABLE WIDTH=100%><TR>
<TD><IMG SRC=Webdriver?LO=
10109766443206 &Type="image/gif”

Botticelli
<P>Birth:1445

<P>Death:1510<TD>
<TD ALIGN=LEFT><P>Alessandro Filipepi,
called “il Botticelli’’,
was borns in Florence...
</TD></TR></TABLE><P>

Tools

0 HTML Editors
OWYSWYG Editors
[Provide Database import facilities

0 Database Publishing Wizards

[0 Export database tables, views, reports,

forms for Web publishing

[J Target formats: HTML code (for static
pages), HTML or 4GL extension source

code (for dynamic page creation)

27

Paolo Merialdo

Tools (2)

0 Web site managers

0 provide graphic interface on the content of a Web
site for a tree-like presentation and manipulation
of HTML files

0 utilities to check link consistency

0 RADs and Web form editors

0 provide support for exporting tables, views, reports
in HTML (or Java)

0 Assist developers in the construction of interactive
form based applications for accessing and
updating data

Tools (3)

0 CASE Tools

0 provide full support in both the design and
development activities

0 use a model driven approach

28

Paolo Merialdo

Web site Characterization

Hypertext
Complexity
High
Low
Small Large Quantity
of Data

[Fernandez et al., SIGMOD98]

WBIS Features

. E-Commerce Sites
I Interactivity (e.g. Amazon.com)

WFMSs

DB Front-End
(e.g. www.fs-on-line.com)

Data

Catalogue Sites
(e.g. Bibliographic sites)

Advertising Sites

Hypertext
Structure

29

Paolo Merialdo

Web site Characterization:
measuring the hypertext complexity

Hypertext _ Number of
Complexity APage-Schemes

High

Low

Small Large Quantity
of Data

Hypertext Complexity -> Number of Page-schemes

Sites with small
quantities of data

0 Features
— Several "Unigue" pages
— Focus on graphic layout of pages
— Maintenance: adding, removing unique pages;
link consistency
0 Tools
— HTML editors
— Site managers

30

Paolo Merialdo

Sites with
large quantities of data
and low complexity

0 Features
— Few page-schemes with "table data"
— Focus on data
— Maintenance: updating the pages’ contents

o Tools
— Site managers
— Database publishing wizards
— Web form editors

Sites with
large quantities of data
and high complexity

0 Features
— Several interconnected page-schemes
— Focus on data and navigation

— Maintenance: updating contents and structure

0 Tools
— RADs
— CASE Tools

31

