
Querying Multidimensional Databases?

Luca Cabibbo and Riccardo Torlone

Dipartimento di Informatica e Automazione
Universit�a di Roma Tre

Via della Vasca Navale, 79 | I-00146 Roma, Italy
E-mail: fcabibbo,torloneg@inf.uniroma3.it

Abstract. Multidimensional databases are large collections of data, of-
ten historical, used for sophisticated analysis oriented to decision making.
This activity is supported by an emerging category of software technol-
ogy, called On-Line Analytical Processing (OLAP). In spite of a lot of
commercial tools already available, a fundamental study for OLAP sys-
tems is still lacking. In this paper we introduce a model and a query
language to establish a theoretical basis for multi-dimensional data. The
model is based on the notions of dimension and f-table. Dimensions are
linguistic categories corresponding to di�erent ways of looking at the in-
formation. F-tables are the constructs used to represent factual data, and
are the logical counterpart of multi-dimensional arrays, the way in which
current analytical tools store data. The query language is a calculus for
f-tables, and as such it o�ers a high-level support to multi-dimensional
data analysis. Scalar and aggregate functions can be embedded in cal-
culus expressions in a natural way. We discuss on conceptual problems
related with the design of multidimensional query languages, and com-
pare our model and language with other approaches.

1 Introduction

The integration of database management systems with on-line analytical process-
ing (OLAP) technology is a challenging goal of recent years [8]. In fact, while the
former provide solid and e�cient tools for on-line transaction processing, OLAP
systems can support knowledge workers and decision makers in the sophisti-
cated analysis of enterprise data. The e�ectiveness of this analysis is related to
the ability to describe and manipulate data according to di�erent and often inde-
pendent perspectives or \dimensions." For instance, single sales of items provide
much more information to business analysis when organized into, e.g., number
of items sold by category of product, geographical location, and time. Thus, we
can say that OLAP technology complements database technology, in providing a
multi-dimensional view of raw data and suitable tools for its analysis. Generally,
these tools enable the users to: (i) de�ne analytical equations across multiple
data dimensions, possibly involving complex calculations, to represent numer-
ous, speculative enterprise model scenarios; (ii) summarize data sets, aggregating

? This work was partially supported by Consiglio Nazionale delle Ricerche and by
MURST.

and disaggregating over the various dimensions; and (iii) evaluate and view the
outcomes of the analysis. To understand the e�ect of changes in environmental
factors, this process is often iterated by changing equations and parameters.

Current technology provides both OLAP data servers and front-end analy-
sis tools. The former can be either relational systems (ROLAP) or proprietary
multi-dimensional database systems (MOLAP) [9]. The latter o�er interactive
graphical user interfaces, usually similar to spreadsheets. While this allows the
user to easily summarize and view data, spreadsheet-like environments su�er
from several limitations in constructing and maintaining analytical models over
the enterprise data. The main point is that these models rely an a logic that
is often left implicit, leading to several problems, including redundancy and in-
consistency [15]. Moreover, the integration with database technology is based
on ad-hoc techniques, rather than any systematic approach. As others [12], we
believe that the problem is the lack of a formal theoretical foundation.

In this paper, we propose the MultiDimensional data model and query lan-
guage, as a new basis for OLAP systems. The model allows to describe the logical
structure of the enterprise data according to multiple perspectives, by providing
an explicit notion of dimension. Dimensions are the linguistic categories used
to characterize the structure of data, according to a conceptual business per-
spective. They are organized into hierarchies of levels, corresponding to possible
granularities of data. Factual data are then represented by f-tables, the logical
counterpart of \multi-dimensional arrays" (the way in which OLAP systems
store values). Values in f-tables are accessed through symbolic coordinates. The
query language enables the user to express cross-dimensional analytical equa-
tions, based on logical expressions over f-tables, in a simple and declarative way.
Queries make use of interpreted functions, but the language is parametric with
respect to the ones chosen. A distinctive feature of our model is the use of roll-up
functions, which describe how data are related within hierarchies of levels. Roll-
up functions provide the query language with a simple and powerful mechanism
to join data at di�erent levels of aggregation.

The main contributions of the paper are the following. The presentation
of a multi-dimensional database model, which provides a �rst step towards a
logical foundation of OLAP systems. The development of a calculus-like query
language, which o�ers a high-level support to multi-dimensional data analysis.
The study of the expressiveness of the model and the query language, based on
a comparison with other related approaches in the literature. In particular, we
show that our model subsumes the relational data model.We then prove that our
query language, with a suitable collection of functions, expresses the relational
algebra, eventually extended with aggregate functions [16]. We also show that,
with a limited set of interpreted functions, the query language is able to express
a broad class of queries.

Related work. The term OLAP has been recently introduced by Codd et al. [8] to
characterize the category of analytical processing over large, historical databases
(data warehouses) oriented to decision making. Further discussion on OLAP,
multi-dimensional analysis, and data warehousing can be found in [6,14,22,24].

A comparison between OLAP concepts and the area of statistical databases is
given in [20].

An important OLAP operation is summarization of data over one or more
dimensions. Klug [16] provided a �rst theoretical basis in this respect, by ex-
tending the relational algebra and calculus with aggregate functions, that is,
interpreted functions taking a set of tuples as argument and producing a single
value as result. Our approach is more general than Klug's one, since the Mul-
tiDimensional model subsumes the relational one. Furthermore we consider, in
addition to aggregate functions, also scalar functions.

Many authors [5,11,19,23] claim that SQL is unsuited to data-analysis ap-
plications, since some aggregate and grouping queries are di�cult to express
and optimize. They thus consider the problem of extending SQL with aggrega-
tion and analysis-oriented operators that are more powerful, but also speci�c
to particular application domains. Gray et al. [11] propose cube as an opera-
tor generalizing group by. Chatziantoniou and Ross [5] extend both SQL and
the relational algebra with an operator, dealing with \aggregation variables", to
succinctly express common queries, providing also a basis for improved query
optimization. Rao et al. [19] consider the issue of supporting quanti�ed queries,
a class of queries that is di�cult to deal with in SQL; they introduce a number
of \generalized quanti�ers", that is, aggregate set-predicates such as some, all,
and at-least. Many of the features considered in such proposals can be easily
expressed in our language using a limited collections of scalar and aggregate
interpreted functions.

Agrawal at al. [4] have proposed a simple hypercube-based data model, and a
few algebraic operators for it. This framework shares a number of characteristics
and goals with ours. However, the approach is rather pragmatic, mainly oriented
towards a direct SQL implementation into a relational database. Conversely,
we have followed a more systematic approach. Moreover, our notion of roll-up
function let us capture and describe hierarchies of levels within dimensions in a
neater way, and allows us to express more easily complex aggregations in queries.

Libkin et al. [17] have de�ned a language for querying data organized in
multi-dimensional arrays, to support the scienti�c computing community with
database technology. The MultiDimensional model is at a di�erent, and perhaps
higher, abstraction level; our notion of f-table is indeed a \logical" counterpart of
a \physical" multi-dimensional array. It should also be noted that our approach
is motivated by a business context.

Gyssens et al. [12] have proposed the tabular database model, together with
a complete algebraic language for querying and restructuring, as a �rst theo-
retical foundation for OLAP systems. A main di�erence with respect to their
approach is that we introduce an explicit logical notion of dimension, allowing
for multi-dimensional structures, whereas their tables are bidimensional. Their
query language covers only the aspect of restructuring, whereas we allow complex
computations based on formulas and functions.

Organization. The paper is organized as follows. The MultiDimensional data
model is presented in Section 2. The associated query language is introduced

informally, by means of examples, in Section 3, and described formally in Sec-
tion 4. Section 5 presents expressiveness results. Finally, Section 6 discusses
further research topics.

2 The MultiDimensional Data Model

This section introduces the MultiDimensional data model (MD for short). The
model is based on the notion of dimension that allows to specify multiple \ways"
to look at information, according to natural business perspectives under which its
analysis can be performed. Each dimension is organized in a hierarchy of levels,
corresponding to data domains at di�erent granularities. A MultiDimensional
scheme consists of a set of f-tables that are de�ned with respect to particular
combinations of levels. A MultiDimensional instance associates measures, which
correspond to data being tracked, with symbolic coordinates over f-tables.1 Fi-
nally, within a dimension, values of a �ner granularity can roll up to (that is,
can be grouped into) values of a coarser one.

Example 1. A marketing analyst of a chain of toy stores may organize its busi-
ness data along dimensions like time, product, and location. The time dimension
may be organized in levels day, quarter, week, and year, and Feb 19, 97 is an
element of the day level. The elements of this level roll up to elements of levels
week and quarter. Similarly, both weeks and quarters roll up to years. Note how-
ever that weeks do not roll up to months, since months do not divide evenly into
weeks. In this framework, a measure can be the number of items sold by the
chain. This measure could be represented by means of an f-table Sales, having
symbolic coordinates on the levels day, item, and store: an instance of Sales
might state the fact that on Feb 19, 97 the store Colosseum has sold 11 pieces
of Lego.

2.1 MultiDimensional Schemes

Let us �x two disjoint countable sets of names and values. We denote by L
a set of names called levels such that: (i) each level l 2 L is associated with
a countable set of values dom(l), called the domain of l; and (ii) the various
domains associated with di�erent levels are pairwise disjoint.

De�nition 2 (Dimension). A dimension d is a triple (L;�;R-UP), where:

{ L � L is a �nite set of levels;
{ � is a partial order de�ned among the levels of d. Whenever l1 � l2 we say
that l1 rolls up to l2 or that l2 drills down to l1;

1 Actually, the `f' in the term `f-table' has a double meaning. On one hand, it stands for
`function', because each f-table is indeed a function, from coordinates to measures. On
the other hand, it stands also for `fact', since f-tables represent a form of information
that practitioners implement by means of the so-called `fact tables'.

{ R-UP is a family of functions, called roll-up functions, satisfying the follow-
ing conditions:
� for each pair of levels l1; l2 such that l1 � l2, the roll-up function r-upl2l1
maps each element of dom(l1) to an element of dom(l2). Whenever
r-up

l2
l1
(o1) = o2 we say that o1 rolls up to o2, or that o2 drills down

to o1;
� given levels l1; l

0, and l2 such that l1 � l0 � l2, (and thus, l1 � l2)
the function r-upl2

l1
equals the composition r-upl2

l0 �r-up
l0

l1
. This implies

that: (i) for each level l, the function r-upll is the identity on dom(l);
and (ii) whenever a level l1 rolls up to l2 in di�erent ways (e.g., rolling
up through either l0 or l00) then the elements of l1 roll up to elements of
l2 in a consistent way.

Example 3. Consider Example 1. The relevant information is organized along
dimensions time, product, and location, and involves numeric data describing
sales and prices. The dimension hierarchies are depicted on top of Figure 1;
note that each dimension takes the name from one of its levels (often the least
upper bound of its lattice). The �gure shows that, e.g., level item rolls up to both
category and brand; because of reexivity, item rolls up also to itself and, because
of transitivity, it rolls up to product. The domain associated with the level day
contains, among others, values Jan 5, 97, Feb 19, 97, and Mar 10, 97, all of which
roll up to the element 1Q-97 of the level quarter. The level store contains values
Colosseum and Navona, both of them rolling up to Rome (in level city) and Italy
(in level area). The level numeric is a built-in level type, having as domain the
rational numbers.

De�nition 4 (Scheme). A MultiDimensional scheme is a pair (D;F), where:

{ D is a �nite set of dimensions;
{ F is a �nite set of f-table schemes of the form f [A1 : l1; : : : ; An : ln] : l0,
where f is a name (with the condition that di�erent f-table schemes have
distinct names), each Ai, for 1 � i � n, is a distinct name (called an attribute
of f), and each li, for 0 � i � n, is a level of some dimension in D.

Example 5. Figure 1 shows the MD scheme Toys, having two f-tables, named
Sales and Price-List. Intuitively, the f-table Sales represents summary data
for the sales of the chain in terms of pieces sold (dimension numeric), organized
along dimensions time (at day level), location (at store level), and product (at item
level). F-table Price-List is instead used to price the various items, assuming
that prices may vary from month-to-month, and that di�erent stores sell each
item at the same price.

2.2 MultiDimensional Instances

De�nition 6 (Coordinate). Let S = (D;F) be a MultiDimensional scheme
and f [A1 : l1; : : : ; An : ln] : l0 be an f-table scheme in F . A (symbolic) coordinate

day
@@I �

���month

6

quarter
���

week

A
AAK

year

6

time

store

6

city

6

area

6

location

item

A
AAK

category

�
���

brand

�
���

A
AAK

product numeric

boolean

Sales [day : day; item : item; store : store] : numeric

Price-List [item : item;month : month] : numeric

Fig. 1. The sample Toys scheme.

 over f is a function mapping each attribute name Ai (with 1 � i � n) to
an element oi 2 dom(li). If is a coordinate over f such that (Ai) = oi, for
1 � i � n, we denote by [A1 : o1; : : : ; An : on].

De�nition 7 (Instance). Let S = (D;F) be a MultiDimensional scheme and
f [A1 : l1; : : : ; An : ln] : l0 be an f-table scheme in F . An instance over f is a
function from coordinates over f to dom(l0), which is de�ned over a �nite set
of coordinates. An instance over S is a function mapping each f-table f in F to
an instance over f .

An entry of an f-table instance f is a coordinate over which f is de�ned. The
actual value that f associates with an entry is called a measure. Note that
measures and attributes are both de�ned with respect to levels of dimensions,
and thus the distinction between them is terminological and not conceptual.
In other words, our model does allow a symmetric treatment of measures and
components of coordinates.

It is apparent that our notion of \symbolic coordinate" is related with that of
\tuple" in the relational model. This is motivated by the intuition that an f-table
is a \logical" counterpart of the \physical" notion of a multi-dimensional array.
It can also be noted that the notation we use for symbolic coordinates resembles
subscripting into a multi-dimensional array (although in a non-positional way).
There is however an important di�erence between f-tables and multi-dimensional
arrays. Speci�cally, in arrays, \physical" coordinates vary over intervals within
linearly-ordered domains (in particular, over initial segments of natural num-
bers), whereas we do not pose any restrictive hypothesis on the domains over
which coordinates range. In this sense, our notion of coordinate is \symbolic."

Example 8. A possible instance for the sample scheme Toys de�ned in Example 5
is shown in Figure 2. Note that two di�erent (graphical) representations for

f-tables are used in the �gure. A symbolic coordinate over the f-table Sales is
[day : Jan 5, 97; item : Scrabble; store : Navona]. The actual instance associates
the measure 32 with this entry.

day item store Sales

Jan 5, 97 Scrabble Navona 32
Jan 5, 97 Risiko Navona 27
Jan 5, 97 Lego Sun City 42
Jan 5, 97 Risiko Sun City 22
Feb 19, 97 Scrabble Navona 32
Feb 19, 97 Lego Navona 25
Feb 19, 97 Lego Colosseum 11
Mar 10, 97 Risiko Navona 5
Mar 10, 97 Lego Sun City 6

Price-List Jan-97 Feb-97 Mar-97

Lego 12:99 9:99 9:99

Risiko 14:99 12:99 12:99

Scrabble 12:99 12:99 12:49

Trivia 18:99 17:99

Fig. 2. A sample instance over the Toys scheme.

Figure 2 suggests that several di�erent representations of a same f-table are
possible. A tabular representation for an f-table f (like the one used for Sales)
consists of a relation over the attributes of f , plus a further column for the mea-
sures provided by the instance; this representation suggests a way to implement
f-tables with the relational model. If an f-table has n attributes, it can be also
represented as a n-dimensional array (like the one used for Price-List) in which
an entry corresponds to a measure of the instance. This representation recalls
the way in which multidimensional systems usually store data.

3 The MultiDimensional Calculus by Examples

In this section, we present md-cal, a query language for the MD model. This
language is a calculus for f-tables, and allows the analyst to express analytical
queries in a declarative way.

Interpreted scalar and aggregate functions can be used in queries, but the
semantics of the language is parametric with respect to them. This gives us the
freedom of choosing the most suitable collection of functions, according to the
speci�c application domain. Then, given a collection G of interpreted functions,
we denote by md-cal(G) the MD query calculus that allows to use the functions
in the collection G.

The presentation is mainly based on examples that refer to the Toys sample
scheme introduced in the previous section.

3.1 Basic Queries

Intuitively, a MultiDimensional query is a mapping from instances over an input
MD scheme to instances over an output MD scheme. The input and output

schemes are de�ned over the same dimensions but distinct f-tables. For the sake
of simplicity, we shall assume that the output scheme of a query contains just a
single f-table, called the output f-table of the query.

If the output f-table of a query has scheme f [A1 : l1; : : : ; An : ln] : l, then an
md-cal query is speci�ed by means of an expression of the following form.

fx1; : : : ; xn : x j (x; x1; : : : ; xn)g

In the �rst part of the query, called the target list, x; x1; : : : ; xn are distinct
variables; the distinguished variable x is called the result variable. Furthermore,
 (x; x1; : : : ; xn) is a �rst-order formula in which x; x1; : : : ; xn are the only free
variables. The formula is composed by equality atoms involving f-tables, roll-
up functions, and interpreted scalar and aggregate functions.

Intuitively, the result of the query is an instance over the output f-table,
associating a measure m to the entry [A1 : c1; : : : ; An : cn] for those values
m; c1; : : : ; cn that, respectively substituted to x; x1; : : : ; xn, satisfy the formula.

An important aspect in md-cal is what we call \de�niteness" of queries.
Intuitively, this property guarantees that queries de�ne indeed f-tables, which,
by de�nition, must be �nite and satisfy a sort of functional dependency from
coordinates to measures. We shall discuss on this issue in Section 4.3; for the
time being, we present only examples that obviously satisfy this property.

As a �rst example, the following query is used to de�ne an f-table

Rome-Sales[day : day; item : item; store : store] : numeric

to represent the same information as Sales, but limited to the stores in Rome.

fx1; x2; x3 : x j
x = Sales[day : x1; item : x2; store : x3]^Rome = r-up

city
store(x3)g

3.2 Scalar Functions

As we have said, an atom in the formula of a query can use a prede�ned set G of
interpreted functions. This set can include system-de�ned or user-de�ned scalar
functions, that is, functions that use only atomic values as inputs and outputs
(e.g., all the standard mathematical operators, such as + and �). Special care
must be devoted in de�ning the semantics of a scalar function when one or more
of its arguments is unde�ned. In what follows, unless otherwise stated, we will
assume that the result of a function is unde�ned whenever one of its argument
is unde�ned.

The following query de�nes the f-table with scheme

Daily-Revenues[day : day; item : item; store : store] : numeric

that represents the daily revenues, for each store and item. A measure for a
certain item is obtained by multiplying the number of pieces sold in a day, by

the price of the item in that month.

fx1; x2; x3 : x j
9x4(x4 = r-upmonth

day (x1)^

x = Sales[day : x1; item : x2; store : x3] �Price-List[item : x2;month : x4])g

3.3 Aggregate Functions

The set G can also include aggregate functions, that is, functions that applied
to a collection of values yield an atomic value; these are of special interest in
OLAP systems. Typical aggregate functions are those of SQL, that is, min, max,
count, sum, and avg, which apply to expressions over columns.

For instance, the following query de�nes the f-table having scheme

Summary-Sales[week : week; item : item; area : area] : numeric;

which represents summary data of sales, detailed by week, item, and area.

fx1; x2; x3 : x j
x = sum(y1; y2 : y j y = Sales[day : y1; item : x2; store : y2]^

x1 = r-upweekday (y1) ^ x3 = r-upareastore(y2))g
The argument of the operator sum in the above query is a query q itself. The
target list of q speci�es \local" variables, and the result variable is used for the
aggregation. Intuitively, the result of the whole query is as follows. For a week
w, an item i, and an area a, let Sw;i;a be the result of the query obtained from
q by substituting w; i; a for x1; x2; x3, respectively. It is easy to see that Sw;i;a
represents the number of sales of the item i in the days of the week w, in the
stores of a. Now, let m the total sum of the sales in Sw;i;a. Then, the result of
the whole query associates m with the coordinate w; i; a.

Note that, similarly to SQL, only entries of f-tables (which are non-null by
de�nition) take part of the computation of the sum.

Assume now that we want to compute the f-table having scheme

Weekly-Revenues[week : week; item : item; store : store] : numeric;

which represents the weekly revenues, detailed by item and store. To do so, we
can make use of the previously de�ned f-table Daily-Revenues, summarizing
by weeks, as follows.

fx1; x2; x3 : x j
x = sum(y1 : y j y = Daily-Revenues[day : y1; item : x2; store : x3]^

x1 = r-upweekday (y1))g
However, we can also write the following query, which does not require the
de�nition of Daily-Revenues.

fx1; x2; x3 : x j x = sum(y1 : y j
9y2(x1 = r-upweekday (y1) ^ y2 = r-upmonth

day (y1)^

y = Sales[day : y1; item : x2; store : x3] �Price-List[item : x2;month : y2]))g

3.4 Abstraction Queries

In the context of multi-dimensional data, it is often useful to transform measures
into components of coordinates of f-tables, and vice versa. We call abstractions
such transformations. The following example shows how to perform an abstrac-
tion in md-cal. The query generates the boolean f-table

Total-Sales[item : item; store : store; year : year; items-sold : numeric] : boolean

by summarizing on the number of sales and using the result as an element of a
symbolic coordinate.

fx1; x2; x3; x4 : x j x = true ^

x4 = sum(y1 : y j y = Sales[day : y1; item : x1; store : x2] ^ x3 = r-up
year
day (y1))g

Intuitively, the e�ect of this query is the following. For each triple c1; c2; c3 of
values over the variables x1; x2; x3, the two formulas in the body are evaluated,
using x4 and x to hold the respective results, say, c4 and m. Then m (that
is, true) is assigned to the entry having coordinate [c1; c2; c3; c4]. Note that the
f-table we obtain represents, in every respect, a relation of the relational model.

4 The MultiDimensional Calculus

In this section we formally introduce the MultiDimensional query calculus
md-cal.

In what follows we �x a MultiDimensional scheme S and an instance I over
S. We also �x a collection G of scalar and aggregate interpreted functions. Each
function in G is characterized by a signature and an interpretation. For a scalar
function g 2 G, the signature has the form g : l1� : : :� ln ! l, where l; l1; : : : ; ln
are levels; an interpretation for g is a function from dom(l1)� : : :� dom(ln) to
dom(l). For an aggregate function h 2 G, the signature has the form h : 2l

0

! l,
where l and l0 are levels; an interpretation for h is a function from �nitemulti-sets
of elements in dom(l0) to elements of dom(l).

4.1 Syntax

For each level l, assume the existence of a countable set of variables of type l.
The terms (over S and G) and their respective types are recursively de�ned

as follows.

{ A variable of type l is a term of type l;
{ a value in dom(l) is a term of type l;
{ if t is a term of type l and l rolls up to a level l0, then r-upl

0

l (t) is a term of
type l0;

{ if f [A1 : l1; : : : ; An : ln] : l is an f-table scheme and t1; : : : ; tn are terms of
type l1; : : : ; ln, respectively, then f [A1 : t1; : : : ; An : tn] is a term of type l;

{ if g : l1 � : : :� ln ! l is a scalar function and t1; : : : ; tn are terms of type
l1; : : : ; ln, respectively, then g(t1; : : : ; tn) is a term of type l;

{ if h : 2l
0

! l is an aggregate function, and � j is a query (de�ned below)
whose result variable is of type l0, then h(� j) is a term of type l.

An atom (over S and G) is an expression of the form t = t0, where t and t0 are
terms (over S and G) of the same type. The formulas (over S and G) are de�ned
as follows.

{ An atom is a formula;
{ if 1 and 2 are formulas, then 1 ^ 2, 1 _ 2, and : 2 are formulas;
{ if is a formula and x is a variable, then 9x() and 8x() are formulas.

The notions of free and bound occurrences of variables are as usual, with the fol-
lowing additional consideration: the variables in the target list of an aggregation
term are bound outside the term.

An md-cal query is an expression of the form

fx1; : : : ; xn : x j (x; x1; : : : ; xn)g;

where (x; x1; : : : ; xn) is a formula having x; x1; : : : ; xn as distinct free variables.
The expression x1; : : : ; xn : x is called the target list, and x the result variable.

4.2 Semantics

Let q be an MD query of the form fx1; : : : ; xn : x j (x; x1; : : : ; xn)g. The pre-
result of q on I, denoted by pre(q(I)), is the set of tuples of values c; c1; : : : ; cn
that, respectively substituted to x; x1; : : : ; xn, satisfy the formula with respect
to I. In such tuples, the �rst component c is called the result value.

The notion of satisfaction of a formula with respect to a substitution � and
an instance I is de�ned in the usual way, with the following considerations.

{ The substitutions are typed, so that variables vary over values of the corre-
sponding types. For the time being, we assume that values are chosen from
the domain dom(S), that is, the union of the domains of the levels occurring
in S.

{ Consider an atom of the form t = h(� j), where h is an aggregate function,
and a substitution � over the free variables of the atom. Let T be the pre-
result of the query f� j �()g over I and let M be the multi-set containing
the result values of T , with the respective multiplicity. Then, the atom is
satis�ed if �(t) = h(M).

Thus, the pre-result of an md-cal query is a set of tuples, to be used as coor-
dinates and measures of the result f-table. This is however not always possible,
since there are pre-results that do not correspond to f-table instances. We say
that the pre-result of a query over an instance is functional if it does not contain
a pair of di�erent tuples that coincide on all values, but the result value.

Let q be a query having f [A1 : l1; : : : ; An : ln] : l as output scheme. If the pre-
result F = pre(q(I)) of q is functional, then we can build in the natural way an
f-table instance ft(F) from it, as follows. For each tuple c; c1; : : : ; cn in F , ft(F)
associates the result value c to the symbolic coordinate [A1 : c1; : : : ; An : cn].
Then, the result of q over I, denoted by q(I) is de�ned as ft(pre(q(I))).

4.3 De�niteness

Apart from functionality, the result of a query should satisfy another important
property: the �niteness of the result. Actually, in the context of the relational
calculus, a more general notion, the domain independence, has been de�ned to
capture the �niteness of queries. In this section, we introduce and discuss the
issue of de�niteness as a desirable property for md-cal queries: intuitively, this
notion combines the properties of domain independence (in the context of the
MD model) and functionality.

Indeed, the notion of domain independence has been further generalized for
queries involving interpreted functions, in particular, to bounded depth domain
independence [1]. Now, it is straightforward to de�ne the result of an md-cal

query relativized to a domain d rather than to the domain dom(S). Then, we
can say that, intuitively, an md-cal query q (using functions from a collection G)
is bounded depth domain independent if, for any instance I, its result depends
only on a domain including the active domain adom(q; I) of I and of q, plus a
further small set of values obtained by applying a bounded number of times the
roll-up functions and the functions in G to adom(q; I).

We say that an md-cal query q is de�nite if, for any input instance I, it is
bounded depth domain independent and functional.

Syntactic characterizations that ensure bounded depth domain independence
have been proposed, for instance, embedded allowedness [10]. On the other hand,
the property of functionality can be reduced to a problem of implication of
functional dependencies for the md-cal language.

Example 9. Let us consider the query in Section 3.2 de�ning the f-table Daily-
Revenues. Intuitively, this query is bounded depth domain independent since:
(i) the variables x1; x2; x3; x4 are bounded to values occurring in the input in-
stance (note that the variable x4 is bounded also because its values can be
obtained by applying a roll-up function to a bounded variable); and (ii) the
variable x is bounded to values that can be obtained by a single application of
the scalar function �. Moreover, the query is functional since the functional de-
pendency x1; x2; x3 ! x is implicated by the following facts: (i) x4 functionally
depends on x1, because of the roll-up function; and (ii) x functionally depends
on x1; x2; x3; x4, because of the application of a scalar function to two measures
that functionally depends on x1; x2; x3 and x2; x4, respectively. Hence, the query
is de�nite.

If we restrict md-cal to queries involving no functions (neither roll-up nor
interpreted ones), de�niteness of md-cal queries corresponds to domain inde-
pendence and functionality in the context of the relational model. It is well-know

that both properties are undecidable, but become decidable if the language is
restricted to positive existential calculus queries [2]. It is also clear that de�-
niteness is undecidable in md-cal, but decidable in positive existential md-cal
without functions. We can show that de�niteness is decidable for positive exis-
tential md-cal queries involving roll-up functions.

5 Expressive Power

In this section we study expressiveness of the MultiDimensional model and the
md-cal query language. We show that the MD model subsumes the relational
data model.We also show that, with suitable choices of interpreted functions, the
conjunctive md-cal expresses the relational calculus (Section 5.1) and Klug's
query languages with aggregate functions [16] (Section 5.2). In doing so, we show
that a restricted number of functions su�ces to express SQL with aggregation
operators, and some of its extensions in the context of data analysis.

In what follows, given a data model m, we denote by repm(S) (repm(I),
respectively), the representation, in the MultiDimensional model, of the scheme
S (instance I) of the model m. Then, we say that an md-cal query q expresses
a query q0 in a language L for a model m if, for any instance I of m it is
the case that repm(q0(I)) equals q(repm(I)). We also say that an MD query
language expresses another query language L if it expresses all the queries that
are expressible in L.

5.1 MD and Relational Databases

Let S be a relational database scheme, that is, a set of relational schemes of the
formR(A1 : d1; : : : ; Ak : dk), where each Ai (with 1 � i � k) is an attribute name
and each di is an associated domain. The representation reprel(S) of the scheme
S is the MD scheme containing: (i) a dimension (consisting of a single level) for
each distinct domain of S; and (ii) an f-table scheme R[A1 : l1; : : : ; Ak : lk] : T for
each relation scheme R(A1 : d1; : : : ; Ak : dk), where each li is the level associated
to the domain di, and T is a level whose domain contains only the boolean value
\true."

Then, the representation reprel(I) contains, for each relation R 2 S, an f-
table instance R such that R[t] = true if and only if the tuple t belongs to R in
the instance I.

Clearly, md-cal expresses the relational calculus and, therefore, the rela-
tional algebra. However, an interesting result is that the conjunctive md-cal

language (involving only 9 and ^) plus two simple interpreted functions is as
expressive as the relational algebra. These functions are: (i) the aggregate func-
tion �, which tests whether its argument is not empty; (ii) the scalar function
if, to compose terms of the form if C then E else E0, whose �rst argument
C is a conjunction of boolean terms, that returns the second argument E if C
evaluates to \true," and the third argument E0 if C evaluates to \false" or it is
unde�ned.

Theorem 10. Conjunctive md-cal(�; if) expresses the relational algebra.

Proof: (Sketch) All the operators of the relational algebra, but the projection,
the union, and the di�erence, can be easily implemented in conjunctive md-cal
without interpreted functions. We then use the following expression to compute
the result of a projection R = �A1;:::;Ak

(S).

fx1; : : : ; xk : x j
x = �(yk+1; : : : ; yn : y j y = S[A1 : x1; : : : ; Ak : xk; Ak+1 : yk+1; : : : ; An : yn])g

The di�erence of two relations R and S is expressed by:

fx1; : : : ; xn : x j
x = if R[A1 : x1; : : : ; An : xn]^ S[A1 : x1; : : : ; An : xn]

then ? else R[A1 : x1; : : : ; An : xn]g;

where the symbol ? stands for `unde�ned.'
Finally, the union of two relations R and S is expressed by:

fx1; : : : ; xn : x j
x = if R[A1 : x1; : : : ; An : xn]

then R[A1 : x1; : : : ; An : xn] else S[A1 : x1; : : : ; An : xn]g

ut

5.2 MD and Aggregate Functions

We now compare the expressive power of md-cal with the languages (an algebra
and a calculus) having aggregate functions proposed by Klug [16]. In particular,

Klug's algebra, denoted by RAAgg, is a standard relational algebra extended
with an aggregate formation operator and a family Agg of aggregate functions.
Intuitively, the aggregate formation operator partitions its argument according
to a group-by list, and then applies an aggregate function h to each partition,
to yield a tuple in the result. We assume that any aggregate function in Agg has
a natural counterpart in the MD setting.

Theorem 11. Conjunctive md-cal(�; if; Agg) expresses RAAgg.

Interestingly, there is a trade-o� between scalar functions and the more complex
aggregate functions. In particular, it turns out that any traditional aggregate
function is subsumed by sum together with suitable scalar functions.

Theorem 12. Conjunctive md-cal(sum; if;�) expresses md-cal().

Let Gsql be the set of SQL aggregation operators, that is, sum, count, avg, min,
and max. We also have the following result.

Theorem 13. Conjunctive md-cal(sum; if; +; *; /;�) expresses md-cal(Gsql).

The intuition behind this result is that many statistical computations on numeric
series are essentially based on the evaluation of the \expected value" of some
scalar functions, de�ned as the mean of the function applied to the elements of
the series. A similar result has been obtained in the context of a nested relational
language [18].

Actually, we can show that conjunctive md-cal(sum; if; +; *; /;�) expresses
other aggregate functions, including the generalized quanti�ers (set predicates
such as some, all, and at-least) introduced in [19], and special operators (like
rank, ratio-to-report, and n-tile) introduced in some SQL's extensions in
the context of data analysis [23].

Example 14. Let S[A : d] : numeric be an f-table that associates a numeric
measure to elements of a dimension d. The following query de�nes the f-table
S-rank[A : d] : numeric that associates a rank with S. Speci�cally, if there are n
distinct values that occur in the measure of S, then S-rank associates a natural
number with each entry of S: n with the entry having the highest value, and 1
with the entry having the lowest.

fx1 : x j x = sum(y1 : y j y = if S[A : x1] � S[A : y1] then 1 else 0)g

6 Conclusion

In this paper we have proposed a model and a calculus-based query language to
establish a theoretical basis for multidimensional data.

Practical OLAP systems require a number of query languages, at di�erent
abstraction levels. On one hand, the �nal user should be enabled to perform
point-and-click operations by means of graphical metaphors. Typical ways of
manipulating a multi-dimensional data collection are: roll up (summarize data),
drill down (go to more detailed data), slice and dice (select and project on a bidi-
mensional view), pivot (reorient a data cube, projecting on di�erent dimensions).
On the other hand, the sophisticated user that needs to express more complex
queries should be allowed to use a declarative, high-level language. Note that a
practical language of this kind can be easily drawn frommd-cal by adding some
syntactical sugar. Finally, query optimization can be e�ectively performed by re-
ferring to a procedural, algebraic language. Thus, a family of di�erent languages
should by adopted by an OLAP system, and mapping between them should be
de�ned.

Further current research topics in the context of OLAP systems are modeling
and optimization. Dimensional modeling focuses on how information can be
organized according to natural business concepts, i.e., the way decision-makers
look at their business data, to enable decision support. Optimization concerns
the ways in which factual data can be e�ciently stored and manipulated. There
are two main approaches to this problem in the context of decision-support
applications: materialization of pre-computed summary data [13,21] and query
optimization [3,7].

The formal nature of the model proposed here is well-suited for an inves-
tigation of the above problems. In particular, we are currently developing an
algebra for the MultiDimensional model, for studying the e�cient evaluation of
multidimensional queries.

Acknowledments

We would like to thank Sophie Cluet and the anonymous referees for helpful
suggestions.

References

1. S. Abiteboul and C. Beeri. On the power of languages for the manipulation of
complex objects. Technical Report 846, INRIA, 1988.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. S. Agarwal et al. On the computation of multidimensional aggregates. In Twenty-
second Int. Conf. on Very Large Data Bases, Bombay, pages 506{521, 1996.

4. R. Agrawal, A. Gupta, and S. Sarawagi. Modeling multidimensional databases. In
Thirteenth IEEE International Conference on Data Engineering, pages 232{243,
1997.

5. D. Chatziantoniou and K. Ross. Querying multiple features of groups in relational
databases. In Twenty-second Int. Conf. on Very Large Data Bases, Bombay, pages
295{306, 1996.

6. S. Chaudhuri and U. Dayal. Decision support, Data Warehousing, and OLAP. In
Tutorials of the Twenty-second Int. Conf. on Very Large Data Bases, 1996.

7. S. Chaudhuri and K. Shim. Optimization of queries with user-de�ned predicates.
In Twenty-second Int. Conf. on Very Large Data Bases, Bombay, pages 87{98,
1996.

8. E.F. Codd, S.B. Codd, and C.T. Salley. Providing OLAP (On Line Analyti-
cal Processing) to user-analysts: An IT mandate. Arbor Software White Paper,
http://www.arborsoft.com.

9. G. Colliat. OLAP, relational, and multidimensional database systems. ACM SIG-
MOD Record, 25(3):64{69, September 1996.

10. M. Escobar-Molano, R. Hull, and D. Jacobs. Safety and translation of calculus
queries with scalar functions. In Twelfth ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems, pages 253{264, 1993.

11. J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data Cube: a relational
aggregation operator generalizing group-by, cross-tab, and sub-totals. In Twelfth
IEEE International Conference on Data Engineering, pages 152{159, 1996.

12. M. Gyssens, L.V.S. Lakshmanan, and I.N. Subramanian. Tables as a paradigm for
querying and restructuring. In Fifteenth ACM SIGACT SIGMOD SIGART Symp.
on Principles of Database Systems, pages 93{103, 1996.

13. V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing data cubes e�-
ciently. In ACM SIGMOD International Conf. on Management of Data, pages
205{216, 1996.

14. W.H. Inmon. Building the Data Warehouse. John Wiley, second edition, 1996.
15. T. Isakowitz, S. Schocken, and H.C. Lucas. Toward a logical/physical theory of

spreadsheet modeling. ACM Trans. on Inf. Syst., 13(1):1{37, January 1995.

16. A. Klug. Equivalence of relational algebra and relational calculus query languages
having aggregate functions. Journal of the ACM, 29(3):699{717, 1982.

17. L. Libkin, R. Machlin, and L. Wong. A query language for multidimensional
arrays: Design, implementation, and optimization techniques. In ACM SIGMOD
International Conf. on Management of Data, pages 228{239, 1996.

18. L. Libkin and L. Wong. Aggregate functions, conservative extension, and linear
orders. In Workshop on Database Programming Languages, pages 282{294, 1993.

19. S. Rao, A. Badia, and D. Van Gucht. Providing better support for a class of
decision support queries. In ACM SIGMOD International Conf. on Management
of Data, pages 217{227, 1996.

20. A. Shoshani. OLAP and statistical databases: Similarities and di�erences. In Six-
teenth ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Sys-
tems, pages 185{196, 1997.

21. D. Srivastava, S. Dar, H.V. Jagadish, and A. Levy. Answering queries with ag-
gregation using views. In Twenty-second Int. Conf. on Very Large Data Bases,
Bombay, pages 318{329, 1996.

22. Stanford Technology Group, Inc. Designing the data warehouse on relational
databases, 1995. Unpublished manuscript.

23. Red Brick Systems. Decision-makers, business data, and RISQL, 1995. White
Paper, http://www.redbrick.com.

24. J.L. Weldon. Managing multidimensional data: Harnessing the power. Database
Programming & Design, 8(8):24{33, August 1995.

