
3Journal of Database Management Apr-June 2000

Vol. 11, No. 1

Manuscript originally submitted

Database Cooperation:
Classification and Middleware Tools1
PAOLO ATZENI, Università di Informatica e Automazione
LUCA CABIBBO, Università di Informatica e Automazione
GIANSALVATORE MECCA, Università della Basilicata

Copyright ©2000, Idea Group Publishing.

We propose new criteria for the classification of systems for database cooperation, based on the nature of the
component databases. In fact, the traditional criteria — heterogeneity, distribution, and autonomy — are often
constraints for the design process, rather than design parameters. In this case, other features of the component
databases should be addressed. We claim that a more useful classification can be based on three new criteria: (a)
degree of transparency, (b) complexity of operations, and (c) level of liveliness of data. This leads us to distinguish
three main categories of systems: (i) multidatabases, (ii) data warehouses, (iii) local information systems with
external data. For each of these categories we discuss implementations based on tools offered by currently available
technology.

INTRODUCTION
The recent growth of computer networks, in terms of

both technology, methodology and actual deployment, has
created enormous expectations in many users. The achieve-
ment of a smooth interaction of the various components
within the organization and the development of a simplified,
uniform interface offered to the outside world can be consid-
ered major long-term goals of an enterprise-wide network
(Kim, 1995). In this perspective, data should circulate easily,
without need for replication nor for reentry.

In most cases, networks have appeared late in a picture
that already included many application systems, developed
independently from one another. As a natural consequence, it
is expected that these applications cooperate, possibly within
a larger effort to reengineer not only the information system
but also the business processes of the enterprise. The need for
establishing cooperation among these systems arises also for
other motivations. First, it is common now to buy specific
applications, for example to manage accounting or personnel
data, from specialized vendors; these independent applica-
tions have then to be integrated in “the” enterprise informa-
tion system. Second, companies now often merge or split, and

existing systems have to evolve accordingly. Finally, there
are systems that have existed for years, such as airline
reservation systems, that by their own nature need to interact
with information systems from different companies. Specifi-
cally, the discussion in this paper is the synthesis of a
contribution to the development of applications over a na-
tional network being deployed in Italy, to connect all the
offices in the civil administration.

It is important to clarify that the interaction among
different systems over a network may occur at various levels.
The simplest is connectivity, which is realized when systems
and networks are linked together in some way and so allowed
to exchange information; this is for example the case of any
system connected to the Internet using the TCP/IP protocol.
A more complex form of interaction is interoperability, in
which systems and networks interact by means of standard
services. In Internet, we have standard protocols above TCP/
IP, such as file transfer (with the file transfer protocol, ftp),
virtual terminal (telnet), electronic mail (X.400 or ESMTP/
MIME), directory service (X.500), the World Wide Web
(http). In this case, the interaction between different systems
is limited to standard services offered on top of the connectiv-

4 Apr-June 2000 Journal of Database Management

ity environment. Finally, the highest form of interaction is
cooperation, the only one that gives actual benefit to the final
user in a transparent way; in this case, applications over
different systems interact with one another, and, at the ex-
treme level, integrated, distributed applications coordinate
existing local applications.

The cooperation of information systems requires that
the participant systems offer services, and happens when
systems make use of services offered by other systems. A
major feature of most cooperative information systems is that
their component systems have to serve two different sets of
goals: those related to the specific task they have originally
been designed for and those shared with the other participants
in the cooperation. Component systems are subject to evolu-
tion for technical or organizational reasons, and the same
could happen to the requirements of the overall cooperative
systems. Therefore, it has been observed that a fundamental
issue in the study of cooperative information systems is the
“management of change” (De Michelis et al., 1998). It turns
out that most of the issues related to this framework also arise
when one considers migration of information systems: if a
conservative, gradual approach is taken (and this is usually
the only reasonable choice (Brodie and Stonebraker, 1995),
except for a few extreme cases), then intermediate phases in
the migration activities would require cooperation among
components. Moreover, since migration is almost a
neverending activity, as the steady state is seldom reached, it
could often be the case that complex systems need to be
cooperative at all times.

Cooperation can be studied in various ways. From a
rather standard information-system point of view, we believe
that it could be important to distinguish two main forms of
cooperation:2

• data-oriented cooperation, in which data in a system is
visible and/or accessible to other systems;

• process-oriented cooperation, in which systems offer ser-
vices, exchange messages (or data, documents) and trigger
activities.

Practical systems are usually based on both kinds of
cooperation. However, it is very often the case that one of the
two aspects — data sharing or process sharing — represents
a prevalent requirement for the final system. Moreover, for
methodological reasons, we tend to study data-oriented fea-
tures and process-oriented features in a rather independent
way. As a matter of fact, in our study for the Italian public
administration, we found the major instances of potential
cooperative systems to be placed in one of the two areas. For
example, all the systems related to interoffice payments fall
in the process-centered cooperation, whereas integrated civil
service register or census systems fall in the data centered
cooperation.

In this paper we explicitly consider the issue of data-
oriented cooperation, studying features and requirements
of applications that need to share data. As an ideal goal,

one could think that database cooperation should aim at
offering to the user a fully-fledged distributed database: the
whole patrimony of relevant data is shown as if it were
stored in a unique, possibly distributed database, with a
complete transparency with respect to location, ownership,
and with continuous access to non-replicated operational
data allowed to all authorized users. However, current
technology falls short from supporting such a situation or,
at best, can support it only at very high costs, especially if
performance, availability, and reliability are important. As
a consequence, the design of a system for database
cooperation requires an in-depth evaluation of costs and
benefits.

The main contribution of the paper consists in a set
of criteria for classifying data-oriented cooperative
applications, which help to identify how close we should
go to the ideal “distributed-database goal”. The paper is
organized as follows. First, we discuss the different needs
from which cooperation may arise, and propose a set of
classification criteria that go beyond the usual degrees of
heterogeneity, autonomy, and distribution. Based on these
criteria, we develop a new classification of data-oriented
cooperative systems, which incorporates traditional
architectures, such as federated databases or data ware-
houses. We then briefly discuss how existing middleware
tools can be used as a basis for the implementation of the
main categories of cooperative systems. Finally, we
conclude with a discussion that relates cooperation with
reengineering and migration.

CLASSIFICATION CRITERIA
Cooperation means that we have multiple systems; data

cooperation means that we have multiple databases that
handle data. Traditional criteria for classifying cooperative
systems, in the context of distributed and federated databases
(Sheth and Larson, 1990), refer to the level of: (i) distribution;
(ii) heterogeneity ; and (iii) autonomy of the component
databases. The level of distribution is a measure of how the
various resources, and especially data, are spread over the
system. Distribution may range from different databases on a
same machine to databases spread over a geographic net-
work. Note that, as opposed to usual distributed databases,
here distribution is not a design process, but a fact, due to the
preexistence of the cooperating databases.

Heterogeneity arises in many different aspects. There
can be differences in the computing environments (hardware,
operating system, network software). The database manage-
ment systems involved may differ in the data model (e.g.,
relational, hierarchical, object-oriented, file-based), in de-
tails in the same data model (e.g., incomparable versions of
the relational model, with different data types and available
constraints), in the language (e.g., different dialects of SQL).
There can be semantic heterogeneity, due to differences in the
meaning of data. Autonomy is the absence of a common (and

5Journal of Database Management Apr-June 2000

Vol. 11, No. 1

coordinated) control over the various systems. The level of
autonomy measures how much the component databases will
preserve their own structure and will be able to satisfy local
requests while they concur to the cooperative system. Au-
tonomy arises in different aspects. Design autonomy occurs
if the various systems are built independently, with different
choices (thus inducing heterogeneity). Service autonomy
corresponds to decisions on if and how cooperation is estab-
lished (what services are offered). Execution autonomy oc-
curs if cooperative operations are executed under local con-
trol, thus preventing cooperation to interfere with “private”
operations.

These three criteria were mainly proposed (Sheth and
Larson, 1990) with respect to contexts in which the primary
goal is to establish an integrated system, and a central institu-
tion can influence directly the design of the peripheral infor-
mation systems. However, they cannot be considered as
classification criteria in our context, since in the design of
cooperative information systems we should be ready to tackle
highly distributed, heterogeneous, and autonomous systems.
In the worst case, these are constraints on the design process.
In other cases, the presence of some coordinating authority
might take advantage of cooperation as a stimulus for
reengineering, possibly reducing the degrees of distribution,
heterogeneity, and autonomy, if they correspond to “deficien-
cies” to overcome.

These considerations suggest to adopt, with respect to
the design of cooperative systems design, other criteria that
allow to better characterize the nature of cooperation needs.
The criteria we propose are:
• the degree of transparency of component data;
• the complexity of operations;
• the level of liveliness (or up-to-dateness, as opposed to

obsolescence or latency) of data.
We discuss them in turn in the following sections.

Transparency
The degree of transparency in accessing distributed

data refers to the need for hiding distribution and heterogene-
ity of component systems in a data-oriented cooperation. In
other words, it tries to indicate how much the cooperative
system must appear to global users as an integrated database.

Based on this criterion, we can recognize some interest-
ing classes of systems:
• at the highest level of transparency, there are those systems

that integrate the component databases; the cooperative
system offers an integrated interface to the cooperative
application, which sees one single (virtual) database, hav-
ing an integrated schema (either a database schema or a set
of functions);

• at the other extreme, each component database offers a set
of services, and distribution and heterogeneity are not
masked at all; in this case, each cooperative application is
responsible for accessing, integrating, and transforming

the various pieces of data.
Clearly, the design and implementation of a single,

integrated interface requires some complex and delicate ac-
tivities, related to the translation and integration of the
individual schemes (Batini et al., 1986) and instances. How-
ever, despite its complexity, this activity has the virtue of
resolving, once and for all, the possible data conflicts due to
different schemes or different semantics, whereas, in a low
transparency system, these problems must be resolved each
time a different cooperation need arises.

Complexity of Operations
The complexity of operations refers to the need for

coordination in the execution of operations, that is, queries
and transactions. In other words, it is the level of synchroni-
zation needed to perform queries and updates on the compo-
nent databases. It is well known that the proper management
of distributed transactions (Gray and Reuter, 1993) in a
heterogeneous environment has important implications on
data integrity and reliability (Garcia Molina and Hsu, 1995),
so that the complexity of these transactions constitutes an
important classification criterion. In fact:
• complex queries (involving join of large relations from

different databases) or transactions (with multiple updates
in different databases) require the development of sophis-
ticated components to guarantee efficiency and correct-
ness;

• on the other side, simple transactions (for example, involv-
ing read-only data, accessed separately) do not require
specific support.

Liveliness of Data
The liveliness of data refers to the need for actual availability

of current data. Symmetrically, it indicates how much the
information associated with data can be obsolete. From
this point of view, the extreme cases are the following:

• the cooperative system requires on-line access to the
actual data in the various component databases;

• the system has access to copies, with a controlled degree
of obsolescence with respect to the original data.

In the first case, the highest grade of coherence and
liveliness is guaranteed; however, managing on-line connec-
tions and transferring large quantities of data over the net-
work can sometimes be too expensive. In all the cases in
which access to the most recent information is not mandatory,
a reasonable alternative is to create, off-line, copies of data in
the remote systems, and to allow access only to these local
copies. Clearly, in this case, access to these secondary copies
will mainly be read-only; otherwise, maintaining consistency
with the primary copy may be a difficult task. On the other
side, one has much more freedom in correlating and trans-
forming heterogeneous data, in order to build a local inte-
grated database.

It is important to note that this criterion can be applied

6 Apr-June 2000 Journal of Database Management

independently to the various components of data: many
applications require actual liveliness for some of their data
and can tolerate obsolescence for others.

DATA-CENTERED COOPERATION: A
CLASSIFICATION

The discussion in the previous section suggests that the
design of a good cooperative system must be a compromise
between efficiency, flexibility, and liveliness of the stored
data. Based on the three criteria we proposed above for data-
centered cooperation, we now present some important cat-
egories of cooperative systems. It is worth noting that there is
no need to consider all combinations, since our criteria are not
completely independent from one another. For example,
usually a system that requires complex distributed transac-
tions will be reasonably designed to provide a high degree of
transparency, through a sophisticated integration architec-
ture.

With this in mind, we discuss three different main
categories of cooperative systems. A multidatabase is a
system in which the highest degree of transparency, complex-
ity, and up-to-dateness is provided. A data warehouse is a
systems in which a high degree of transparency is still
provided, but liveliness of data is sacrificed to achieve better
integration and flexibility. Finally, a local information system
with external data is a system offering support for simple
transactions, with a low degree of transparency and varying
degree of up-to-dateness. It is reasonable to expect that real
needs of cooperation will often fall in between these catego-
ries, and that aspects of several of them must be incorporated.
Anyway, we choose these systems because they allow an
interesting discussion of the main features and because the
intermediate solutions can often be seen as “linear combina-
tions” of them. A discussion on how these architectures can
be implemented using existing middleware tools can be found
in the following section. Applications of our classification to

a real case is shown in the Discussion.

Multidatabases
A multidatabase is a cooperative system offering an

integrated interface over the component databases, hiding
distribution and heterogeneity, supporting complex opera-
tions and on-line access to remote data. Requests from local
clients continue to be locally satisfied by the single compo-
nent databases, thus preserving autonomy. This architecture
corresponds to the extreme case in integration needs, with
high degree of transparency, complexity, and up-to-dateness.
This kind of cooperation is natural in all the cases in which it
is necessary a strong integration among databases.

In many cases, the burden of managing distributed
transactions is too high, and a controlled level of obsoles-
cence is tolerated to achieve better performance. Also, the
high degree of transparency can be offered by a multidatabase
in different ways. In some cases, the component databases
will share all their data; in other cases, only a pre-defined set
of functionalities or services. The higher is the degree of
transparency, the higher is the flexibility, but also the imple-
mentation cost and the complexity of the system.

The development of multidatabases requires suitable
methodologies and tools for integrating the various database
features (schemes, data, and languages).

Figure 1 shows the logical architecture of a
multidatabase. A particular class of multidatabases, in which
the integration occurs along the data dimension, corresponds
to the (tightly coupled) federated database systems (Sheth
and Larson, 1990), which appear to external users as single
databases, with a single schema, and allow to perform com-
plex queries and updates.

Data Warehouses
The use of secondary copies can be made extreme when

planning or analysis needs impose to access large quantities
of data; often, in these cases, it is not required to access the
most recent version of the data, and a controlled level of
obsolescence can be acceptable. In this case, querying the
database is the main activity; queries can involve large
quantities of data, and impose complex transformations, due
to the need for correlating different data sources, in such a
way that on-line processing may be very expensive. If so, the
cooperative system is likely to be a data warehouse, that is,
a collection of data with the following characteristics (Inmon,
1996):
• a high degree of transparency, since remote data are

replicated and integrated in the warehouse to become
homogeneous;

• mainly read-only access;
• limited, but indeed controlled, degree of up-to-dateness.

In the Data-Warehouse approach (shown in Figure 2)
data are extracted from the component databases and inte-
grated in the data warehouse in an off-line fashion. Of course,

Figure 1: Multidatabase

7Journal of Database Management Apr-June 2000

Vol. 11, No. 1

this makes updates a problematic task; however, read-only
access is granted, with a great transparency and flexibility.
The applications supported by a data-warehouse are typically
oriented to decision support (for marketing, sales, financial
analysis), investigation, and summarization. This architec-
ture has attracted a great interest in the marketplace (OLAP,
data cube, and multidimensional data-
base technologies (Chaudhuri and
Dayal, 1997)).

Multidatabases
vs. Data-Warehouses

We mention advantages of each
of the two proposed architectures with
respect to the other. The advantages of
the data-warehouse architecture are the
following. First, it avoids conflicts be-
tween the operational activities (car-
ried out on the primary data) and the
decision support ones (carried out on
the warehouse); in fact, data are repli-
cated and accessed off-line. Also, the
cooperative application can be avail-
able even when the primary source of
data is unavailable (also because of
execution autonomy). Finally, the ware-
house approach allows to perform com-
plex restructuring and aggregation over
heterogeneous sources.

Correspondingly, the advantages
of the multidatabase architecture are
mainly due to the fact that a

multidatabase supports on-line access to current data, which
is sometimes essential; in fact, up-to-dateness of secondary
copies of data are difficult to maintain if primary data change
rapidly; finally, a multidatabase can support unpredicted
queries, whereas a data-warehouse might be tuned for spe-
cific aggregations.

Thus, there is no clear distinction between the two
approaches. For instance, a complex system may require to
manage: (i) data whose up-to-dateness is essential; (ii) data
whose primary copy is expensive to access (with respect to
the actual need for up-to-dateness); and (iii) stable data that
are always aggregated in the same way. Therefore, we could
need an integration of replicated and primary data. Figure 3
shows an intermediate solution satisfying such needs. Even in
this case, our classification can be useful, since it can help in
finding the portion to be implemented by means of a
multidatabase (on-line) approach and the portion that can be
replicated and accessed off line.

Local Information Systems With External Data
A local information system with external data is a

cooperative system, localized on a single site corresponding
to one of the component systems, with the need to access one
or more remote databases, with the following characteristics:
• low degree of transparency in accessing distributed data;

every database exports a set of pre-defined services (data
and functions), based on appropriate cooperation agree-
ments, and the task of the application is to integrate remote

Figure 2: Data-Warehouse approach

Figure 3: An intermediate solution between a multidatabase and a data warehouse

8 Apr-June 2000 Journal of Database Management

data; thus, the level of integration of the external databases
is very limited;

• small amount of distributed operations (queries and trans-
actions), with low complexity; this is somehow the dis-
tinctive feature of these systems, that is, the need to access
remote databases mainly one-at-a-time; the simplicity of
transactions makes it possible for the application to guar-
antee correctness and consistency without dedicated mecha-
nisms;

• variable degree of up-to-dateness; usually,
access to on-line data can be provided, but also
intermediate solutions based on replication can
be adopted.

Figure 4 shows the architecture of a local
information system with external data. The
application of the local system is responsible
for the integration, and includes also the man-
agement of data conversion and access control.
The approach is meaningful only in presence
of simple operations.

ARCHITECTURAL
TECHNIQUES

Cooperation between components in a
complex environment is usually performed by
means of the client-server paradigm. Because
of the complexity of the applications, the over-
all architecture is often a multi-tier client-

server one, where a server is in turn a client of another service,
and so forth.

The various techniques can be classified into two main
classes: (i) techniques based on data transfer, and (ii) tech-
niques based on message exchange. For both of them, we
further distinguish between on-line techniques and off-line
ones. Thus, we obtain four main classes of client/server
techniques, shown in Figure 5. Each technique has possibly
several implementations as a middleware service, that is, a

software service that resides in an intermediate
layer between a computing platform (above the
operating system and the networking software)
and an application (Bernstein, 1996). A
middleware tool is a software package offering
a (possibly integrated) set of middleware ser-
vices. Usually, each middleware tool is based
upon one such technique, providing one class
of functionalities, useful for loosely coopera-
tive systems. However, new commercial tools
are arising, that allow to use functionalities
corresponding to several of these techniques,
in a more integrated fashion.

It is also worth mentioning that the ex-
plosion of the World Wide Web represents an
extraordinary opportunity for establishing co-
operative initiatives (Atzeni et al., 1997). In
fact, it is based on a standard connectivity
environment (the Internet), and offers a uni-
form inter- face for sharing data, at the same
time guaranteeing complete transparency with
respect to the distribution of data.

On-Line Data Transfer: Gateways
A gateway is a middleware tool enabling

Figure 4: Local information system with external data

Figure 5: Main client/server classes of techniques

9Journal of Database Management Apr-June 2000

Vol. 11, No. 1

applications for one database to access data over another
database, usually by means of data manipulation language
(DML) commands, such as SQL ones. The goal of a gateway
is that of mapping client commands into server commands,
and data returned from the server in the client format.

Gateways exist in the relational world to access, from
a relational application, both legacy data and relational data
living in a heterogeneous DBMS (possibly using different
SQL dialects, data types, and constraints). This technique is
flexible since the client, if authorized, can access the whole
server database; we note, however, that some tools allow
read-only access, especially in accessing legacy data. On the
other hand, this technique can be rather inefficient, since there
are no predefined queries, that is, the server has to execute
essentially casual queries. For these reasons, it is usually
acceptable to use a database gateway only for accessing
legacy data from a relational client, if accesses have relatively
low frequency and the answer time is not critical.

A multidatabase can be implemented over a database
gateway server, a software tool offering in an integrated
fashion several functionalities, among which SQL on-line
data transfer and distributed transaction management. The
database gateway server plays the role of database integrator,
becoming the data server for the cooperative application. The
architecture corresponds to that of a distributed DBMS,
implemented with gateways, and accomplishes the goals of a
federated database system, although only in a limited way. It
offers high degree of transparency (especially in defining a
global database scheme), supports the complexity of the
operations (with a number of limitations: efficiency of com-
plex queries is not guaranteed, and it is not always possible to
update non-relational data), and a varying level of liveliness,
according to the needs. (Refer to (Rezende and Hergula,
1998) and (Carey et al., 1998) for an in-depth discussion on
gateways and database gateway servers.)

Off-Line Data Transfer
Off-line data interchange means that data are extracted

from the server database, transformed, and then stored in the
client database; this technique is thus based on replications.
Ad-hoc solutions to replications have been used for decades;
current tools offer a systematic approach to replication,
usually to support data-warehousing environments. In par-
ticular, there are possibly separate tools for the various
activities: extraction of data (incremental, with change detec-
tion), translation (between heterogeneous environments),
integration, cleaning, and aggregation. It is possible to imple-
ment replicated data collections by means of specific com-
mercial tools for extracting and replicating data. In particular,
some tools capable of accessing heterogeneous and distrib-
uted sources have been recently proposed. The architecture is
similar to the one based on a database gateway server, except
for the fact that there is no on-line databases integrator, but the
integration is performed off-line, and there is a global inte-

grated database (the Data Warehouse). Such an architecture
has to be supported by a number of additional tools, for
administration (to manage the global scheme) and data access
and analysis, with the goal of achieving a decision support
system and supporting on-line analytical processing.

On-Line Message Exchange
There are several techniques for the synchronous ex-

change of messages among distributed applications, imple-
menting a function-oriented interface between the client and
the server. The simplest tool is represented by Remote Proce-
dure Calls (RPC): a client sends a message to a remote server,
containing the name of a procedure to be invoked and the
necessary parameters; the server executes the procedure and
returns the results in a reply message. More sophisticated
implementations exist in database management systems, rang-
ing from open system APIs to (SQL) stored procedures in
distributed environments.

On-line messages can also be managed by distributed
transaction processing monitors. A (traditional) TP monitor
offers efficient and reliable access from remote terminals,
based on queue management. A distributed TP monitor en-
hances the functionalities of a traditional one offering remote
services in a distributed environment. These software prod-
ucts support the distributed execution of transactions, guaran-
teeing also for their “logical” correctness, in particular ensur-
ing their atomicity and durability. Object-oriented services
offered by modern distributed object technologies (e.g., Ob-
ject Request Brokers) are the natural direction toward which
distributed TP monitors are evolving.

These techniques can be used to implement forms of
cooperation in which the component ISs share set of specific
functionalities operating on the data they control, rather than
the scheme of that data. The global cooperative IS is then built
with the goal of defining complex services based on those
“elementary” functionalities. In this case, the use of a distrib-
uted transaction processing monitor as the main middleware
tool, because of specific functionalities to achieve a strong
level of coordination in distributed transactions, allows to
implement effectively atomic and persistent transactions.

A similar architecture is defined based on an Object
Request Broker, a distributed middle- ware tool enabling the
interoperation of objects, which can easily encapsulate (legacy)
functions and applications.

A discussion on the relationship between gateways and
brokers (and other tools for message exchange) can be found
in (Stonebraker et al., 1998).

Off-Line Message Exchange: Queue Managers
This technique is the asynchronous counterpart of on-

line message interchange. It is again function-oriented, but
the message flow is handled by a queue manager (the corre-
sponding tools are classified as Message-Oriented
Middleware, MOM). The asynchronism solves a main draw-
back of on-line cooperation, since it allows to tolerate un-

10 Apr-June 2000 Journal of Database Management

availability of the server connection. This may happen be-
cause of a network malfunctioning, or because the server is
overloaded, and decides to interrupt remote on-line services
because of execution autonomy. In some cases, the ultimate
goal of the application allows to de-couple the synchronicity
of the cooperation, for instance, when a client sends a requests
to the server, without the need for an immediate answer.

DISCUSSION
In this paper, we have seen that data-centered coopera-

tion may correspond to very diverse needs, and so different
solutions can be offered. Specifically, it turns out that there is
not only one coordinate for complexity (and, as a conse-
quence, for cost and risk of failure). As with any complex
engineering task (and database cooperation is in general a
complex engineering task), each decision has to be based on
a careful evaluation of costs and benefits. We have offered
some lines along which such an evaluation could proceed.

Let us now briefly discuss how our classification can be
applied to the data-centered co- operative applications of the
Department for Higher Education in the Italian administra-
tion. We have found major applications in each of the three
main categories of cooperative systems introduced so far:
• an envisioned application for the on-line management of

the Department’s budget and expenses will fall in the
category of multidatabases, since it requires on-line coor-
dination of information managed by different sources;

• an application for the a-posteriori evaluation of the perfor-
mances of the universities falls in the data warehouse
category, since it can work with off-line data coming from
the various universities in the country;

• an application for the support to the submission and
evaluation of research proposals falls in the category of
local information systems with external data, since it
handles its own data, with some access to other sources
(for example the databases that lists all the professors and
all the universities in the country, with their schools and
departments).

An important issue to be discussed here is that coopera-
tion is often associated with migration (Brodie and
Stonebraker, 1995) or business process reengineering (Ham-
mer and Champy, 1993). It is important to stress that the three
problems are different, although closely related. Business
process reengineering is aimed at improving the way an
enterprise (or organization) operates. As such, it may require
information system (and database) cooperation, as a mean to
support its goals. Migration is an activity that aims at replac-
ing old, expensive, inflexible hardware and software systems
with more modern ones, with a number of goals that go from
reducing maintenance costs to offering new services. There-
fore, migration can be seen as a prerequisite to information
technology support to business process reengineering, be-
cause of the increased flexibility that modern systems offer,
compared to old “legacy” ones. Cooperation, as we argued in

the introduction, is essentially motivated by the need to
respond to new business requirements, both in terms of new
services to be offered because of the development of net-
works and because of reorganization of companies.

Now, it has been argued (Brodie and Stonebraker,
1995) that migration, except for a few extreme cases, should
be pursued with a conservative strategy, composed of a
number of small steps, rather than with a revolutionary one-
shot replacement. This would require the coexistence of new
and old components, which should therefore cooperate. Our
view of cooperation does not require migration of compo-
nents, but at the same time does not prevent it. In a sense, it
can stimulate reflections about migration needs (for example
in terms of devising enterprise standards in languages, data-
base software, operating system, or hardware), without im-
posing them as prerequisites: in fact, migration should be
gradual, but long term goals should be set. Similarly, coop-
eration and migration could help in a business process
reengineering initiative, offering both a stimulus in reconsid-
ering the way the activities in the organization are conducted,
and a better framework to implement new operating proce-
dures, because of more modern and flexible systems.

REFERENCES
P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web.

International Conference on Very Large Databases (VLDB’97),
pages 206—215, 1997.

C. Batini, M. Lenzerini, and S.B. Navathe. A comparative
analysis of methodologies for database schema integration. ACM
Computing Surveys, 18(4):323—364, December 1986.

P.A. Bernstein. Middleware: a model for distributed system
services. Comm. of the ACM, 39(2):86—98, February 1996.

M.L. Brodie and M. Stonebraker. Migrating Legacy Sys-
tems: Gateways, Interfaces & the Incremental Approach. Morgan
Kaufmann, San Mateo, California, 1995.

M.J. Carey, L.M. Haas, J. Kleewein, and B. Reinwald. Data
access interoperability in the IBM database family. Data Engineer-
ing 21(3):4—11, 1998.

S. Chaudhuri and U. Dayal. An overview of data warehous-
ing and OLAP technology. ACM SIGMOD Record, 26(1):65—74,
March 1997.

G. De Michelis, E. Dubois, M. Jarke, F. Matthes, J.
Mylopoulos, M.P. Papazoglou, K. Pohl, J. Schmidt, C. Woo, and E.
Yu. Cooperative information systems: A manifesto. In M. Papazoglu
and G. Schlageter, eds., Cooperative Information Systems: Trends
& Directions, pages 315—363. Academic Press, New York, 1998.

H. Garcia-Molina and M. Hsu. Distributed databases. In W.
Kim, editor, Modern Database Systems, pages 477—493. ACM
Press, 1995.

J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, San Mateo, California, 1993.

M. Hammer and J. Champy. Reengineering the Corporation:
A Manifesto for Business Revolution. HarperCollins Publ., New
York, 1993.

W. Kim, editor. Modern Database Systems: the Object Model,
Interoperability, and Beyond. ACM Press and Addison Wesley,
1995.

11Journal of Database Management Apr-June 2000

Vol. 11, No. 1

W.H. Inmon. Building the Data Warehouse. John Wiley &
Sons, second edition, 1996.

F.F. Rezende and K. Hergula. The heterogeneity problem
and middleware technology: experiences with and performance of
database gateway. International Conference on Very Large Data-
bases (VLDB’98), pages 146—157, 1998.

A.P. Sheth and J.A. Larson. Federated database systems for
managing distributed, heterogeneous, and autonomous databases.
ACM Computing Surveys, 22(3):183—236, September 1990.

M. Stonebreaker, P. Brown, and M. Herbach. Interoperability,
distributed applications and distributed databases: the virtual table
interface. Data Engineering 21(3):25—33, 1998.

Endnotes
1 This paper is part of a joint work between Italian Autorità

per l’Informatica nella Pubblica Amministrazione and
Dipartimento di Informatica e Automazione at Università
di Roma Tre. The authors were also partially supported by
MURST and Università di Roma Tre. A tutorial based on
the same content was presented at the E_R Conference in
Cottbus, Germany, October 1996 and the CAiSE Confer-
ence, in Barcelona, June 1997.

2 It is worth noting that, in the area of Computer Supported
Cooperative Work (CSCW), similar concepts are often
referred to as passive and active, respectively.

