
Supporting multiple roles

through class hierarchies 1

Luca Cabibbo

Dipartimento di Informatica e Sistemistica

Universit�a di Roma \La Sapienza"

Via Salaria, 113 | 00198 Roma, Italy.

e-mail: cabibbo@infokit.ing.uniroma1.it

Abstract

Object Oriented Database Systems should allow their objects to play multiple roles and to
change roles in their lifetime. We describe a data model, based on classes, is-a hierarchies,
and complex types, that allows objects to belong to several classes, so to play multiple roles.
Then we propose a declarative query language to access objects from multiple perspectives, and
an update language to describe dynamics of objects.

1 Introduction

An Object{Oriented database describes a set of objects, corresponding to entities in the real
world. An object in our database may be a Student named \Joe", to which we can refer by
means of its object identi�er (or oid) Joe. At the same time, Joe may be a TennisPlayer, or we
may need to view Joe simply as a Person. Thus, it is natural for Joe to play di�erent roles in
the database. Furthermore, the dynamic nature of the database must allow objects to change
roles in their lifetime, without losing their identity. At a certain time, Joe will cease to be a
Student, will become a Worker, and then a Married person.

We model roles by means of classes. We associate with each class a type, describing
structural properties of the objects in the class. Moreover, we model is-a relationships bymeans
of inheritance hierarchies. They express subtyping and subset relationships between classes. In
this framework, we do not require (in contrast with other proposals, which are more restrictive,
such as [1, 5, 8]), for each object, the existence of a \most speci�c class", because this would
imply, for each pair of classes with a nonempty intersection, a class containing exactly this
intersection. In our example, we need classes Person, Student, Worker, TennisPlayer, and
Married, and not MarriedTennisPlayer, probably a nonempty but meaningless class.

Currently, there are some proposals of data models (and systems) to support such a scenario
of objects playing \multiple roles": hierarchies in IsaLog [3] and LOGIDATA+ [4], from
which this paper inherits many ideas; data specialization in Galileo [2], aspects in [9], object
specialization in [10], and object migration in [11].

In this paper we propose a data model, along with the associated query and update lan-
guages. We allow values of objects to have a complex structure, obtained by means of the set
and tuple constructors.

The query language can express simple queries, similar to the conjunctive (or select{
project{join) queries for relational database. For example, we ask for the names of the wifes
of all persons having name \Paul" writing the query

Married(oid : X;name : \Paul"; spouse : S); P erson(oid : S; name : N):

1Work partially supported by Systems & Management S.p.A.



Note how this query is very similar to the body of a Datalog rule. Actually, the result of this
query is a set of substitutions over the variables X;S, and N or, equivalently, a set of tuples
over these three variables. As a matter of fact, the signi�cance of such a simple language is
due to the possibility of extend it to a full Datalog{like environment. Moreover, we will see
how this declarative language lets us view objects from multiple perspectives [10].

The update language expresses simple transformations on the database, called atomic
transactions. We have �ve kinds of updates, which let us create new objects, delete them
from the database, specialize and despecialize objects (that is, gain and lose roles), and modify
values associated with objects. In this paper, we do not care the capability to express complex
transactions, such as updates subject to conditions, or involving more than one object. Also
in this case, it is possible to extend the language to make it a general update language.

The signi�cance of both languages, in spite of their simplicity, is related to the possibility
to point out some questions about multiple roles and complex structures, �rst of all the
possibility to manage them by means of a class{based data model, in particular within a
declarative framework.

This paper is organized as follows. Section 2 introduces the data model. The query and
the update languages are de�ned in Section 3 and Section 4, respectively.

2 The Data Model

The data model is based on a clear distinction between scheme (the intensional level) and
instance (the extensional level). Many features in this section are inherited from the LOGI-
DATA+ model of data [4]. Intuitively, a scheme describes a set of classes, with their structural
properties2. These are of two kinds: the type associated with objects of a class, and is-a re-
lationships between classes. An instance describes a set of objects, with their values and
memberships in classes.

We �x a countable set A of attribute names and a �nite set B of base type names; associated
with each B 2 B there is a set of base values v(B).

A scheme is a triple S = (C;typ; isa), where

� C is a �nite set of symbols called class names;

� typ is a function de�ned on C such that for each symbol C 2 C, typ(C) is a tuple type
descriptor (see below);

� isa is a partial order over C (with some conditions, see below).

In order to de�ne the components of a scheme, we need the auxiliary notions of type
descriptor and subtyping.

The types of a scheme S are de�ned as follows:

1. if B is a base type name in B, then B is a type of S;

2. if C is a class name in C, then C is a type of S;

3. if � is a type of S, then f�g is also a type of S, called a set type;

4. if �1; : : : ; �k, with k � 0, are types of S and A1; : : : ; Ak are distinct attributes in A, then
(A1 : �1; : : : ; Ak : �k) is also a type of S (tuple type); since the attributes are distinct,
the order of components is immaterial.

2In this paper we do not address behavioural capability of objects in classes.



Moreover, we say that a type � is a subtype of a type � 0 (written � � � 0) if and only if at
least one of the following conditions holds:

1. � = � 0;

2. �; � 0 2 C and (�; � 0) 2 isa;

3. � = f�1g and � 0 = f� 0

1g, with �1 � � 0

1;

4. � = (A1 : �1; : : : ; Ak : �k; : : : ; Ak+p : �k+p), � 0 = (A1 : � 0

1; : : : ; Ak : � 0

k), with k � 0, p � 0,
and for 1 � i � k, it is the case that �i � � 0

i ;

With a few technical extensions the notion of subtyping induces a lattice over the types of
a scheme S. We will see in a following section how a notion of re�nement over values is the
natural counterpart of subtyping over types.

The function typ associates a type with each class name, indicating the set of possible
values; the function val, to be de�ned later, will associate with each type descriptor the
corresponding set of values:

1. base types, which denote prede�ned sets of values, such as integers, reals, or strings, are
obviously types;

2. classes are types3, because we want to be able to reference their elements (this is imple-
mented by means of oid's);

3. 4. set and tuple types can be built from other types (their components), and their values
are sets and tuples, respectively, of the component types.

As we said, the partial order isa of a scheme S is subject to conditions, as follows:

1. if (C1; C2) 2 isa (often written in in�x notation, C1 isa C2, and read \C1 is a subclass
of C2"), then typ(C1) is a subtype of typ(C2);

2. if C 0 and C 00 have a common ancestor (that is, a class C such that C 0 isaC and C 00 isaC),
and a common attribute A, then there is a common ancestor C1 of C 0 and C 00 such that
A is an attribute of C1;

3. if there are C;C 0; C 00 2 C such that C isa C 0 and C isa C 00, then C 0 and C 00 have a
common ancestor in C; that is, multiple inheritance is allowed only beneath a common
ancestor.

The partial order isa has the usual role of is-a relationship. The condition of subtyping is
imposed in order to guarantee that the elements of a subclass have a type \compatible" with
that of the superclass. The de�nition of subtyping for tuple types expresses the idea that a
tuple t belongs to a tuple type � if it has at least the components of � , and possibly some more.
The condition about common attributes insures that each attribute, within a hierarchy, has a
unique uppermost class de�ning it and its \upper type". In this way, possible rede�nitions of
the type of an attribute are forced to happen in a type{compatible fashion4. The condition
concerning multiple inheritance implies that each class belongs to a unique hierarchy, in such
a way that each distint hierarchy corresponds to a taxonomy of the real world.

3This means that classes can be used in building other types, which may therefore refer to the objects in
the classes.

4This hypothesis is not too restrictive. In fact it states that each attribute in a hierarchy has a unique
meaning, disallowing, for example, to have in the Person-Student-Worker hierarchy, an attribute dept in both
Student (meaning the thesis department) and Worker (meaning the working seat).



We say that a class C 2 C is a root class if there is no class C 0 2 C (di�erent from C) such
that C isaC 0. In other words, the root classes of a scheme are those classes without ancestors.
It is apparent that each root class identi�es a distinct hierarchy, that is, the root class and its
subclasses.

Furthermore, if we suppose that, for each class C of a scheme S = (C;typ; isa) there is no
an attribute which appears more than once in typ(C)5, then we can de�ne a function a-typ

associated with typ, from attributes and classes to type descriptors, such that a-typ(A;C)
is the type descriptor of component A in typ(C).

HH
H
HHY

��
�
��*

PP
PP

PPPi

��
��
��1 6

AirplaneCar

Vehicle

MarriedWorkerStudent

Person

Figure 1

Example 1 Figure 1 shows two class hierarchies of a scheme, with roots Person and Vehicle. For this scheme,
considering only the Person hierarchy, we have:

� typ(Person) = (name : string);

� typ(Student) = (name : string; school : string);

� typ(Worker) = (name : string; salary : integer);

� typ(Married) = (name : string; spouse :Married).

isa is the reexive and transitive closure of the relation that contains the pairs (Student, Person), (Worker,

Person), and (Married, Person).
This scheme satis�es the various conditions.

As in every other data model, the scheme gives the structure of the possible instances of
the database. Instances over schemes are built, by means of the set and tuple constructors,
from the elementary values, which come from the value-sets associated with the base types,
and object identi�ers (oid's), which are used as indirect references to elements of classes.

Now, we devote our attention to the de�nition of instance. The �rst step is the de�nition
of the value-sets associated with types. We assume the existence of a countable set O of oid's.
With each type descriptor � we can associate the set val(� ) of its possible values, called its
value-set :

1. if � = B 2 B, then val(� ) = v(B);

2. if � is a class name C 2 C, then its value-set is the set of the oid's O;

3. if � is a set type, that is, it has the form f� 0g, then its value-set is the set of the �nite
subsets of val(� 0);

4. if � is a tuple type (A1 : �1; : : : ; Ak : �k), then

val(� ) = ft : fA1; : : : ; Akg ! [k
i=1val(�i) j t(Ai) 2 val(�i); for 1 � i � kg

that is, the set of all possible tuples over A1; : : : ; Ak of the correct type.

5That is, we disallow situations like typ(C) = (A : (A : : : :)).



With respect to classes, it is important to note that their value-sets only contain oid's;
the actual values of the elements of the classes are de�ned by another function that associates
a value (of the correct type) with each oid; in this way, it is possible to implement indirect
references to objects and other features such as object sharing. Also, for each class, the value-
set is the set of all possible oid's: essentially, we can say that oid's are not typed, and so
they allow the identi�cation of an object regardless of its type; oid's become typed when they
belong to classes.

As we will see later, there is a need to handle incomplete information, allowing for values
to be unde�ned. In this framework we assume the existence of a polymorphic null value ?,
denoting unknown values, and extend all value-sets with this null value.

An instance s of a scheme S = (C;typ; isa), is a pair s = (c;o), where:

� c is a function that associates with each class name C 2 C a �nite set of oid's: c(C) � O,
with the following conditions:

1. if C1isaC2, then c(C1) � c(C2);

2. if c(C1) \ c(C2) 6= ; then C1 and C2 have a common ancestor;

� o is a (partial) function that associates oid's in classes with tuples, as follows. For each
o 2 O, let us consider the role set classes(o) of o, which is the set of classes containing
o: classes(o) = fC j C 2 C; o 2 c(C)g. Then, for each o, if classes(o) is empty, then
o(o) is unde�ned, otherwise it is a value from the value set of the tuple type that is the
greatest lower bound (according to the lattice induced by subtyping) of the types of the
classes in classes(o);

� if a tuple has an attribute A whose type is a class C 2 C, then the value of the tuple
over A is an oid in c(C) (this condition avoids \dangling references");

� for each class C, for each attribute A of C such that a-typ(A;C) is in the form f(: : :)g
(that is, a set of tuples, corresponding to a relation), let us consider the class C 0 which
is the uppermost class in C hierarchy de�ning A. We require that the set of attributes
appearing in a-typ(A;C 0) forms a key (in the sense of relational database theory) for
the set of tuples A of each object in c(C)6.

Therefore, an instance is de�ned by means of the functions c and o.
The function c associates with each class name a set of oid's, with the conditions that

the partial order isa corresponds to subset relations between the involved classes, and that
two classes have a nonempty intersection only if they have a common ancestor in the isa

hierarchy; in this way, for each object, there is a \most general class", that is, the root class of
the hierarchy to which it belongs. This completes, at instance level, the multiple inheritance
condition at scheme level: objects, as well as classes, are partitioned into distinct taxonomies.
This is useful in many applications, because the same happens for real world entities. On the
contrary, as opposed to what happens in other models [1, 5, 8], we do not require, for each
object, the existence of a \most speci�c class", because, in many cases, this could lead to a
proliferation of almost meaningless classes. Note that the function c over classes is equivalently
represented by means of the function classes over oid's, which associates with each object
its role set [11].

The function o associates values with oid's belonging to classes, with the condition that,
for each class C, for each oid o in the instantiation c(C) of C, the value o(o) has a type that

6That is, for each o 2 c(C), the component A of o(o) contains no di�erent tuples t0 and t00 having the same
values over the attributes occurring in a-typ(A;C0).



is a subtype of the type typ(C) of the class. In this way we allow objects to play di�erent
roles having, at the same time, values of a well-de�ned type.

The condition about keys needs additional comments. We will give them in Section 4,
after the introduction of the query and the update languages. Intuitively, this condition is
imposed in order to guarantee well{de�nedness of sets of tuples for components of objects
playing multiple roles.

Example 2 An instance s = (c;o) over the scheme as in Example 1, could be de�ned as follows:

� c is the function

{ c(Person) = fJoe;Meg; Paulg;

{ c(Student) = fJoe; Paulg;

{ c(Worker) = fPaulg;

{ c(Married) = fJoe;Megg;

� o is the function

{ o(Joe) = (name : \Joe"; school : \Medicine"; spouse :Meg);

{ o(Meg) = (name : \Margaret"; spouse : Joe);

{ o(Paul) = (name : \Paul"; salary : 100K).

Let us note that symbolic names for oid's (Joe, Paul, and Meg in the example above) carry
no information beyond object identity, being unrelated to values of corresponding objects.
Moreover, usually oid's are considered not visible to the users. We use symbol constants only
for the sake of presentation, ignoring details concerning oid's implementation or their internal
representation.

Example 3 Let us consider another example, more complex than the previous one. It will be useful in the
following. The scheme SR contains three classes, Reader, A-Reader, and P-Reader, where A-Reader isaReader
and P-Reader isaReader. Each Reader has an associated set of books, described by means of a title. Moreover,
an A-Reader knows authors of its books as well, whereas a P-Reader knows their publishers. Thus, we have in
our scheme:

� typ(Reader) = (books : f(title : string)g);

� typ(A-Reader) = (books : f(title : string; author : string)g);

� typ(P-Reader) = (books : f(title : string; publisher : string)g).

The scheme satis�es the subtyping condition.
We have in this scheme a set of tuples, corresponding to the component books, having Reader as the

uppermost class de�ning it. Thus, we require title, the only attribute appearing in a-typ(books; Reader) =
f(title : string)g, to be a key for each relation bound with books.

An instance sR = (c;o) over SR could be the following:

� c(Reader) = fr1; r2; r3g;

� c(A-Reader) = fr2; r3g;

� c(P-Reader) = fr2g.

� o(r1) = (books : f(title : \Siddharta"); (title : \The Prophet"g);

� o(r2) = (books : f(title : \Momo"; author : \Ende"; publisher : \P:Press")g);

� o(r3) = (books : f(title : \Ulysses"; author : \Joyce")g).

3 The Query Language

In this section we propose the syntax and semantics of a query language for the data model
proposed in the previous section. This language is declarative, allowing for queries having a



structure similar to the body of a Datalog rule. In this way we can express conjunctive queries
in a simple way. The semantics of a query is given from the (typed) substitutions over the
occurring variables occurring that let the query be satis�ed by the actual instance.

We present the language briey de�ning all needed concepts, from term to atom and query,
from typed substitution to satisfaction, as usual in logic programming frameworks.

Let a scheme S = (C;typ; isa) be �xed. Also, let V be a countable set of variables.
The terms of the language are obtained from constants, oid's, variables, and recursive

applications of set and tuple constructors. The type of a term depends on its form and, when
it contains variables or oid's, on the context (that is, the literal) in which it occurs. We will
see how, for variables and oid's, we can obtain a type from their use in atoms. The terms of
the language, with the corresponding types7, are

1. if v 2 V is a variable of type � , then v is a (variable) term of type � ;

2. if d 2 val(B) (with B 2 B) is a constant of type B, then d is a (constant) term of type
B;

3. if t1; : : : ; tk are terms of type � , then ft1; : : : ; tkg is a (set) term of type f�g;

4. if t1; : : : ; tk are terms of type �1; : : : ; �k, and A1; : : : ; Ak are distinct attribute names in
A, then (A1 : t1; : : : ; Ak : tk) is a (tuple) term of type (A1 : �1; : : : ; Ak : �k);

5. if o is an oid in O, of type � , then o is an (oid) term of type � .

Terms of the language are used to build expressions, with set theoretic operators on sets,
and the dot operator on tuples8. The expressions of the language may have the following
forms:

1. each term t of type � is an expression of type � ;

2. if E and E0 are set expressions of type f�g, then E[E0, E�E0 and E\E0 are expressions
of the same type f�g;

3. if E is a tuple expression of type (A1 : �1; : : : ; Ak : �k), then, for each 1 � i � k, E:Ai is
an expression of type �i.

Atoms of the language are used to express (atomic) conditions on objects in the database
and relationships between terms and expressions. The atoms of the language may have the
following forms:

1. class atoms: C(oid : t0; A1 : t1; : : : ; Ak : tk) where C is a class name in C, with
typ(C) = (A1 : �1; : : : ; Ak : �k), t0 is a term of a type C, and for each 1 � i � k, ti is a
term of type �i;

2. equality atoms: t = E, with t term of type � and E expression of the same type � ;

3. membership atoms: t 2 E, with t term of type � and E expression of type f�g.

We say that a variable x is range restricted in an atom A if it satis�es one of the following
conditions:

� A is a class atom in which x occurs as a term;

7The type of variable and oid terms has to be de�ned later.
8It is possible to extend the expressions including other built{in operators, such arithmetic ones on integers,

and so on.



� A is either an equality or a membership atom in which x occurs as the term in the left
side.

A variable is range restricted in a set of atoms if it is range restricted in at least one of
these atoms.

A query Q is a nonempty set of atomsA1; : : : ; Ak, containing only range restricted variables.
The set of variables that occurr in a query Q is called the domain of Q.

In the above de�nition of atoms, each term is required to have a correct, speci�ed type. For
value{based terms, these conditions are constraints; instead, for occurrences of variable and
oid terms, we have their type characterization just as a consequence of the above conditions.
This is the justi�cation of the asymmetry between terms and expressions in equality and
membership atoms. Moreover, this happens without loss of generality.

Example 4 Let us consider the following query over the same scheme as in Example 3:

A-Reader(oid : R; books : B); A 2 B; \Hesse" = A:author:

This query retrieves all A-Reader having at least a book written from Hesse. All variables in the query are
typed:

� R is bound with the oid term of the class atom A-Reader, so R has type A-Reader;

� B is bound with attribute books of A-Reader, so B has type f(title : string; author : string)g;

� A is bound within a membership atom, so it has the type of the component of the (set) expression
B, that is, A has type (title : string; author : string);

� moreover, in the equality atom, the term \Hesse" has type string, as well as expression A:author.

It is apparent that a variable x may occurr several times within a query Q. Moreover, each
occurrence xi of x in Q may be with a di�erent type � i. The type of a variable x within a
query Q is de�ned as the greatest lower bound of the types of the occurrences of x in Q.

Example 5 Let Q be the query over the same scheme as in Example 3:

A-Reader(oid : R; books : B);P-Reader(oid : R; books : B); A 2 B:

This query retrieves information about books of readers that are both A-Reader and P-Reader. All variables
in the query are typed:

� The �rst occurrence of B is as a term of type f(title : string; author : string)g;

� The second occurrence of B is as a term of type f(title : string; publisher : string)g;

� The third occurrence of B is free. Thus, the type of B within Q is the greatest lower bound
of f(title : string; author : string)g and f(title : string; publisher : string)g, that is, f(title :
string; publisher : string; author : string)g;

� Finally, the type of A is (title : string; publisher : string; author : string).

Intuitively, the result of a query is the set of ground typed substitutions over its domain,
that makes true all its atoms. Thus, to de�ne the semantics of a query, we need the important
concept of satisfaction of a ground atom | that is, an atom containing no variables. To
introduce it, we need some other auxiliary, preliminary notions: re�nement, evaluation of an
expression, and typed substitution.

The notion of subtyping, de�ned over types, has re�nement as a natural counterpart over
values (that is, instances of types). With respect to values of base types and oid's (which are
atomic values) re�nement coincides with equality, so the de�nition is really signi�cant with
respect to sets and tuples (which are structured values). We say that a value t of type � is a
re�nement of a value t0 of type � 0 (in symbols t � t0) if and only if at least one of the following
conditions holds:



1. � and � 0 are base types in B, � � � 0, and t = t0 are the same constant;

2. � and � 0 are class names in C, � � � 0, and t = t0 are the same oid;

3. � and � 0 are set types, � � � 0, for each component t1 of t there exists a component t01
of t0 such that t1 � t01, and for each component t01 of t

0 there exists a component t1 of t
such that t1 � t01;

4. � and � 0 are tuple types, � � � 0, with � = (A1 : �1; : : : ; Ak : �k; : : : ; Ak+p : �k+p), � 0 =
(A1 : � 0

1; : : : ; Ak : � 0

k), t = (A1 : t1; : : : ; Ak : tk; : : : ; Ak+p : tk+p), t0 = (A1 : t01; : : : ; Ak : t0k),
and for each 1 � i � k, it is the case that ti � t0i.

Informally, a value t is a re�nement of a value t0 if their types are in a subtyping relationship,
and the \restriction" of t to the type of t0 equals t0. Also in this case, we can extend the set
of values allowed in the language, so to have a lattice induced by the notion of re�nement. In
this way we are able to talk about the greatest lower bound of a set of values.

The notion of evaluation of an expression is de�ned by means of the function eval, from
(ground) expressions to (ground) terms, which gives a meaning to the various built{in functions
introduced. Given a (ground) expression E, we de�ne eval(E) as follows:

1. if E is a term t, eval(E) = t;

2. ifE1 and E2 are expressions, and � 2 f[;\;�g, then eval(E1�E2) = eval(E1)�eval(E2),
assuming for � the usual set theoretic meaning;

3. if eval(t) = (A1 : t1; : : : ; Ak : tk), then, for each 1 � i � k, eval(t:Ai) = ti.

Let a query Q be �xed. A typed substitution � is a function from variables to terms that
maps variables in V (with type � within Q) to ground terms of the corresponding type � . The
notion of typed substitution is extended in the natural way to atoms and sets of atoms, and
then to queries.

We say that an instance s = (c;o) satis�es a ground atom A if:

1. A is a class atom C(oid : o;A1 : t1; : : : ; Ak : tk), o 2 c(C), and o(o) � (A1 : t1; : : : ; Ak :
tk);

2. A is an equality atom t = t0, and t � eval(t0);

3. A is a membership atom t 2 t0, and exists an element t00 2 eval(t0) such that t � t00.

Let us note how the de�nition of satisfaction for class atoms refers to a weak requirement
on values, re�nement rather than equality, because, in general, we do not (need to) know the
exact type of an object within a hierarchy. In this way, class atoms act as \cast" operators
in C: variables occurring in them give rise to substitutions with values of a type which is the
type of the corresponding component in the class. For example, if we suppose that Q is the
atom C(oid : o; a : A; b : B), where o is an oid in a class C, with o(o) equals (a : 1; b : (b1 :
11; b2 : 12)), and typ(C) equals (a : integer; b : (b1 : integer)), then the types of the variables
A and B within Q are integer and (b1 : integer), respectively, and Q is satis�ed from a typed
substitution � such that �(A) = 1 and �(B) = (b1 : 11)

9.
Similarly, we say that an instance s satis�es a set of ground atoms A1; : : : ; Ak if for each

1 � i � k, s satis�es Ai.

9A substitution that gives a value (b2 : 12) for B seems to satisfy the atom as well. But we cannot consider
it, because it is not typed.



Then, the semantics of a query Q = A1; : : : ; Ak is a function query[Q] from instances to
sets of typed substitutions over the domain of Q, de�ned as follows:

query[Q](s) = f� typed substitution over the domain of Q j s satis�es �(Q)g:

The query language proposed needs some additional comments: we propose them resorting to
an example. Given the query

Married(oid : X;name : \Paul"; spouse : S); P erson(oid : S; name : N):

we can think of it as the body of a Datalog rule. An atom expresses a condition over objects
in the corresponding class, an attribute bound with a constant means selection, occurrences of
the same variable in di�erent places mean a join condition, and a comma means conjunction of
conditions. Actually, the result of this query is a set of typed substitutions over the variables
X;S, and N or, equivalently, a set of tuples over these three variables. As a matter of fact, the
signi�cance of such a simple language is due to the possibility of extend it to a full Datalog-
like environment [3, 4]. Because of the presence of complex objects and object identity, the
extension is not straightforward. Intuitively, the computation of a query in this language
is assimilable to the determination of the valuation domain associated with a rule within a
computational step of the semantics of an IQL{like program [1].

Furthermore, this language lets us view objects from multiple perspectives [10]. In fact it
is possible to test membership of an object in several classes, checking for its role set. For
example, if we want all objects that are both student and worker, we can simply query:

Student(oid : X; school : S; : : :);Worker(oid : X; salary : W : : :):

In this way, a substitution satis�es the query only if the oid associated with X is in both the
required classes. At the same time, we can obtain (from substitutions) values for all the needed
components of an object, even if they are represented in di�erent classes, such as school and
salary in example above. Moreover, because of the use of typed substitutions and re�nement,
information split among classes in hierarchies can be rejoined, as in Example 5.

4 The Update Language

We now propose the skeleton of an update language for this data model. The main idea is to
have, at least, a set of \operations" able to manipulate single objects, performing on them the
various possible trasformations over values and roles. These are called atomic updates. Some
concepts in this section are similar in spirit to those in [11], where the subject concerns on at
objects, while we are dealing with hierarchies of complex objects.

In this paper we do not care the ability to express complex transactions, such as conditional
updates, sequencing and iterations. Because of the requirement to act over single objects, with
speci�ed values, we refer in this section only to ground terms. Also in this case, we must resort
to symbol constants to represent oid's.

Given a scheme S = (C;typ; isa), suppose that C is a class name in C, with typ(C) =
(A1 : �1; : : : ; Ak : �k), t0 is an oid term, and for each 1 � i � k, ti is a ground term of type �i.
The atomic updates of the language may have the following forms:

1. create C(oid : t0; A1 : t1; : : : ; Ak : tk);

2. specialize C(oid : t0; A1 : t1; : : : ; Ak : tk);

3. delete t0;



4. despecialize C(oid : t0)10;

5. modify C(oid : t0; Aj : tj), with 1 � j � k.

We now informally describe e�ects of atomic updates. The semantics of each update U is a
partial function effect[U ] from instances to instances. It is partial because of the possibility
to express invalid updates11, such as creations of objects already in the database, or incorrect
specializations. Let us consider an instance s = (c;o).

1. effect[create C(oid : o;A1 : t1; : : : ; Ak : tk)](s) is de�ned i� o is an oid not used in s.
The resulting instance contains a new object, with oid o, such that o belongs to C as
well as to each of its superclasses, and o(o) equals (A1 : t1; : : : ; Ak : tk);

2. effect[specialize C(oid : o;A1 : t1; : : : ; Ak : tk)](s) is de�ned i� o is an oid in the
hierachy which C belongs to, and (A1 : t1; : : : ; Ak : tk) is a re�nement of the restriction
of o(o) to the type which is the greatest lower bound of the types of all superclasses
of C. In the resulting instance, o belongs to C and each of its superclasses, with a
value that is the greatest lower bound, according to the lattice induced by re�nement,
of (A1 : t1; : : : ; Ak : tk) and o(o);

3. effect[delete o](s) is de�ned i� the oid o corresponds to an object in s, and there is no
object in s referring to o. In the resulting instance, o is not used, meaning that o does
not belong to any class, and o(o) is unde�ned;

4. effect[despecialize C(oid : o)](s) is de�ned i� o is an oid in c(C), and there is no
object in s referring to o as an object in neither C nor any of its subclasses. In the
resulting instance, o belongs to the same classes as in s, except for C and its subclasses.
The new value for o is the restriction of o(o) to the type associated with the new role
set of o;

5. effect[modify C(oid : t0; Aj : tj)](s) is de�ned i� o is an oid in c(C). In the resulting
instance, o belongs to the same classes as in s, with the same value as in s, except for
the component Aj, whose value is changed according to tj.12

Let us clarify the de�nitions by means of examples.

� create generates a new object: for example, create Student(oid: Joe, name:\Joe",
school:\Medicine") speci�es the creation of a new object, with oid Joe, in the classes
Student and Person (which is the only Student superclass), with value (name:\Joe",
school:\Medicine").

� specialize gains new roles to an existing object, re�ning its value while preserving old
values for previous roles: specialize Worker(oid: Joe, name: \Joe", salary: 100K) states
that now Joe belongs to the class Worker as well, and its new value is (name:\Joe",
school:\Medicine", salary: 100K).

� despecialize loses roles, adapting values to a correct type: despecialize Student (oid:
Joe) states that Joe is no more a Student, belonging now only to the classes Person and
Worker, with value (name:\Joe", salary: 100K).

10In [11] this update is called generalize.
11Otherwise, we can choose as the semantics of invalid updates the identity transformation.
12This de�nition leaves few points open. They will be clari�ed in the following.



� modify changes a value of an object: modify Worker(oid: Joe, salary: 120K) makes the
value for Joe to be (name:\Joe", salary: 120K).

� delete removes an existing object: delete Joe totally removes the object Joe from the
database. Note how this update is redundant, because it can be replaced from despe-
cialize Person(oid: Joe). At the same time, delete is more expressive than despecialize,
since it does not require the speci�cation of the root of the hierarchy which an object
belongs to.

The various conditions for the existence of the semantics of atomic updates follow from similar
requirements on instances.

� Each object, identi�ed by an oid, has a unique value of the correct type. If o is already
an oid of a Student, we cannot say create Person(oid: o, : : : ), because we require,
for the creation of a new object, the speci�cation of an oid currently unused in the
database.13 Furthermore, if the actual name corresponding to o is \Mark", we cannot
say specialize Worker(oid: o, name: \Joe",: : : ), because in this way we are trying to
modify an existing object value. This attempt would violate the re�nement criterion,
giving rise to an incorrect specialization.

� In an instance, there are no dangling references to objects not in the corresponding
classes: if the School of Medicine object refers to Joe as one of its students, we can apply
neither delete nor despecialize Student to the object Joe.

� Each object may belong to several classes, but all within the same hierarchy; thus we
cannot say specialize Car(oid: Joe, : : : ), because Joe is a Person (as a most general
class) and not a Vehicle.

Before concluding this section, we propose two comments that are useful in order to justify
the key condition imposed over instances in Section 2. The �rst is related to the re�nement
criterion for correct specializations, while the second concerns the semantics of modify over
set{valued attributes.

Remark 1 Consider the scheme SR, and the instance sR over it, in Example 3. In sR, we
have an object r3 belonging to A-Reader, but not to P-Reader, with value (books : f(title :
\Ulysses"; author : \Joyce")g).

Let us now suppose we want to specialize r3 to be an object in P-Reader as well. To do this,
we must say specialize P-Reader(oid : r3; books : : : :), specifying a value for the component
books. This value must be of the correct type in P-Reader, that is f(title : string; publisher :
string)g. We know that actually r3 has a value for books containing only one element, which
has value \Ulysses" for title. To specify a correct specialization, we must con�rm these facts: a
value like (books : f(title : \Ulysses"; publisher : \A:Print")g) achieves this condition, giving
to r3 the new value (books : f(title : \Ulysses"; publisher : \A:Print"; author : \Joyce")g),
while (books : f(title : \King Lear"; publisher : \A:Print")g) does not, resulting in an
incorrect specialization. Actually, the specialization of an object o in a class C has e�ect if
and only if we specify values for o seen as an object in C that are coherent with its previous
values. For simple values (constants and oid's), we must use the old ones; for tuples and sets,
we must use re�ning values. In particular, for sets, it seems to be necessary to specify values
having the same cardinality as the old ones.

This intuitive requirement over sets is achieved by means of the key condition over in-
stances. In the proposed scheme, books is the only attribute involved in the condition, and we

13In this framework we do not address the matter of invention (or distribution) of new oid's.



have seen that title must be a key for objects in Reader hierarchy. As a consequence of this
hypothesis, we cannot have an object r4 in Reader and P-Reader with value (books : f(title :
\Fables"; publisher : \A:Print"); (title : \Fables"; publisher : \P:Press")g). We have two
motivations for this requirement. First, the value for r4 looked as an object in Reader is
(books : f(title : \Fables")g, that is, we \lose" a tuple from books, going against the intuition
of cardinality invariance. Second, and more important, if we try to specialize r4 to belong
to A-Reader with a value (books : f(title : \Fables"; author : \Aesop")g), we are not able
to understand if the value \Aesop" has to be associated with the \A.Print" tuple, the other
one, or both of them. A similar uncertainty happens if we try to do a specialization with a
value (books : f(title : \Fables"; author : \Aesop"); (title : \Fables"; author : \Grimm")g),
because we could not infer relationships between authors and publishers. On the contrary, if
we accept the key condition, we cannot encounter ambiguities like these.

Remark 2 When we try to de�ne the semantics of the modify update, we may have a
problem, due to the possibility of changing a value for a component of an object in a class,
while the object is playing multiple roles, so to de�ne the type of that component in multiple
ways. Also in this case, the main problem is related to sets (of tuples). Let us consider again
the same scheme as in Example 3, and an instance s de�ning an object r5 in class A-Reader,
with value (books : f(title : \Siddharta"; author : \Hesse"); (title : \The Prophet"; author :
\Gibran")g). We are going to discuss the semantics of the three following updates, all applied
to s, concerning on modi�cations of component books of r5 thought as an object in Reader:

1. modify Reader(oid : r5; books : f(title : \Siddharta"); (title : \The Prophet"); (title :
\Fables")g).

2. modify Reader(oid : r5; books : f(title : \Siddharta")g).

3. modify Reader(oid : r5; books : f(title : \Siddharta"); (title : \Fables")g).

What is the semantics of these updates ? If we look at r5 as an object in Reader, we see
that the set books associated with r5, in the input instance, contains two elements, namely
(title : \Siddharta") and (title : \The Prophet").

1. The �rst update states that, in the output instance, the set books of r5 has to contain
three elements. Furthermore, it seems that two of these elements in the input instance
appear in the output one, as well. Thus, the semantics for the �rst update is to insert
a new tuple in books, having value \Fables" for title. But we know that r5 belongs
to A-Reader, and we need a new value for r5 as an object in A-Reader. A possible
solution, in this case, is to extend the value of new components in a set with null values,
when required. Following this idea, in the output instance, we would have for r5 a new
value (books : f(title : \Siddharta"; author : \Hesse"); (title : \The Prophet"; author :
\Gibran")(title : \Fables"; author : ?)g).

2. We can think to a similar approach when we remove an element from a set. In the
second update, we understand that the tuple with value \The Prophet" has to dis-
appear from component books of r5. Thus, we would have a value (books : f(title :
\Siddharta"; author : \Hesse")g).

3. An e�ect of the third update is to let the cardinality of books be an invariant. Does
it mean that we want to modify the title in tuple (title : \The Prophet"; author :
\Gibran") from \The Prophet" to \Fables" ? This would be a rather strange choice,
and we do not consider it. A better interpretation is indeed composed of the deletion of
tuple (title : \The Prophet"; author : \Gibran") from books, followed by the insertion



of a new tuple (title : \Fables"; author : ?). Thus, the result of this update gives to r5 a
value (books : f(title : \Siddharta"; author : \Hesse"); (title : \Fables"; author : ?)g).

Let us note how the above semantics for the three proposed updates, which are representative
examples for modi�cations of set{values, are justi�able resorting to the key hypothesis: within
a modify update referring to a set of tuples, we identify two tuples to be the same if they have
the same values for the key de�ned as above. Without key condition we could not be able to
give (justifying it) a semantics for the three updates.

As a �nal comment, let us outline other di�culties related to updates in this data model.
Consider a scheme with classes Reader, A-Reader, Book, and A-Book, where A-Reader

isa Reader and A-Book isa Book. The types of classes Reader and A-Reader are (books :
fBookg) and (books : fA-Bookg), respectively. This scheme models a reality similar to that in
Example 3. Let us consider a modify update applied to an A-Reader r, thought as a Reader,
that adds r a Book b. If b is not an A-Book as well, we are trying to specify an inconsistent
update, because the resulting instance would have a dangling reference.

Update anomalies like the one outlined in the above example cannot be detected at compile-
time. Other languages, such as Galileo [2], are able to prevent type-anomalies at compile-
time, and therefore are strongly-typed. The trade-o� to be paid for strongly-typing concerns
limitations on the data model, e.g., the type of modi�able values cannot be rede�ned (by
means of subtyping) throughout hierarchies. A solution for a more liberal data model, like
the one presented in this paper, is to check legality of instances obtained as results of update
operations, that is, we must resort to run-time type-checking.

Acknowledgements

The author thanks Paolo Atzeni, Giansalvatore Mecca, and Letizia Tanca for the fruitful
discussions on the subject of this paper.

References

[1] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive. In ACM
SIGMOD International Conf. on Management of Data, pages 159{173, 1989.

[2] A. Albano, L. Cardelli, and R. Orsini. Galileo: a strongly typed interactive conceptual
language. ACM Trans. on Database Syst., 10(2), June 1985.

[3] P. Atzeni, L. Cabibbo, and G. Mecca. IsaLog: A declarative language for complex
objects with hierarchies. In Ninth IEEE International Conference on Data Engineering,
Vienna, 1993.

[4] P. Atzeni and L. Tanca. The LOGIDATA+ model and language. In Next Generation In-
formation Systems Technology, Lecture Notes in Computer Science 504. Springer-Verlag,
1991.

[5] J. Banerjee et al. Data model issues for object{oriented applications. ACM Trans. on
O�. Inf. Syst., 5(1):3{26, January 1987.

[6] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76(2):138{164, 1988.



[7] S. Khosha�an and G. Copeland. Object identity. In ACM Symp. on Object Oriented
Programming Systems, Languages and Applications, 1986.

[8] J. Mylopoulos, P.A. Bernstein, and E. Wong. A language facility for designing database-
intensive applications. ACM Trans. on Database Syst., 5(2):185{207, June 1980.

[9] J. Richardson and P. Schwarz. Aspects: Extending objects to support multiple, inde-
pendent roles. In ACM SIGMOD International Conf. on Management of Data, pages
298{307, 1991.

[10] E. Sciore. Object specialization. ACM Trans. on Database Syst., 7(2):103{122, April
1989.

[11] J. Su. Dynamic constraints and object migration. In Seventeenth International Conference
on Very Large Data Bases, Barcelona, pages 233{242, 1991.


