J. LOGIC PROGRAMMING 1994:19, 20:1-679 1

GOLOG: A LOGIC PROGRAMMING
LANGUAGE FOR DYNAMIC DOMAINS

HECTOR J. LEVESQUE, RAYMOND REITER, YVES

LESPERANCE'!, FANGZHEN LIN, AND RICHARD B.
SCHERL?

>

This paper proposes a new logic programming language called GOLOG
whose interpreter automatically maintains an explicit representation of the
dynamic world being modeled, on the basis of user supplied axioms about
the preconditions and effects of actions and the initial state of the world.
This allows programs to reason about the state of the world and consider
the effects of various possible courses of action before committing to a
particular behavior. The net effect is that programs may be written at a
much higher level of abstraction than is usually possible. The language
appears well suited for applications in high level control of robots and
industrial processes, intelligent software agents, discrete event simulation,
etc. Tt is based on a formal theory of action specified in an extended version
of the situation calculus. A prototype implementation in Prolog has been
developed.

1. INTRODUCTION

Computer systems are often embedded in complex environments with which they
interact. In programming such applications, the designer normally has an elaborate

This research received financial support from the Information Technology Research Center
(Ontario, Canada), the Institute for Robotics and Intelligent Systems (Canada), and the Natural
Science and Engineering Research Council (Canada). Levesque and Reiter are fellows of the
Canadian Institute for Advanced Research.

Address correspondence
to Department of Computer Science, University of Toronto, Toronto, ON, M5S 1A4 Canada.
{hector,reiter,lesperan,fl,scherl}@cs.toronto.edu. http://www.cs.toronto.edu/~cogrobo/

ICurrent address: Department of Computer Science, Glendon College, York University, 2275
Bayview Ave., Toronto, ON, Canada M4N 3M6.

2Current address: Department of Computer and Information Science, New Jersey Institute of
Technology, University Heights, Newark, NJ 07102 USA.

THE JOURNAL OF LOGIC PROGRAMMING

© Elsevier Science Inc., 1994
655 Avenue of the Americas, New York, NY 10010 0743-1066/94/$7.00

. AN

mental model of the environment and how the system’s actions will change the
environment’s state. Users of the system also have this kind of mental model.
Typically, however, the system itself does not maintain an explicit model of the
world it is operating in. This can make life difficult both for programmers and
users — they may end up having to reconstruct the model being used, as there is
no way for the system to explain or justify its behavior. But more importantly,
this makes it difficult to reconfigure or extend the system by giving it “high-level”
instructions, since it has no understanding at all of what it is doing.’

In this paper, we propose a programming language for such systems, whose de-
sign is based on a sophisticated logic of action. The interpreter for the language
automatically maintains an explicit model of the system’s environment and capa-
bilities, which can be queried and reasoned with at run time. This allows complex
behaviors to be defined at a much higher level of abstraction than would be possible
otherwise. The language appears to be a distinct improvement over current tech-
nology for applications such as: high-level control of robots and mechanical devices,
programming intelligent software agents, modeling and simulation of discrete event
systems, etc.

In the next section, we outline the theory of action on which our language is
based. Then, we show how complex actions can be defined in the framework and
explain how the resulting set of complex action expressions can be viewed as a
programming language. In section 4, we illustrate how our language is used through
an example: a simple elevator controller. In the following section, we describe
an implementation of the language, and sketch what experimental applications
have been developed. Section 6 discusses the main distinguishing characteristics
of the language. We conclude by summarizing the main features of our proposal,
discussing its limitations, and outlining ongoing work that seeks to address these.
The presentation throughout is informal in nature; in a companion paper [14], we
explore the more formal aspects of this work.

INFORMAL INTRODUCTION TO THE SITUATION CALCULUS

To obtain the benefits mentioned in the introduction, 1t is necessary to explicitly
model how the world changes as the result of performing actions. There are a
variety of ways of doing this, and we use the language of the situation calculus.

2.1. Intuitive Ontology for the Situation Calculus

The situation calculus (McCarthy [20]) is a first order language (with, as we shall see
later, some second order features) specifically designed for representing dynamically
changing worlds. All changes to the world are the result of named actions. A
possible world history, which is simply a sequence of actions, is represented by a
first order term called a situation. The constant Sy is used to denote the initial
situation, namely that situation in which no actions have yet occurred. There is
a distinguished binary function symbol do; do(«a, s) denotes the successor situation
to s resulting from performing the action a. Actions may be parameterized. For
example, put(z,y) might stand for the action of putting object 2 on object y, in

LA similar view is advanced in Dixon [3].

which case do(put(A, B),s) denotes that situation resulting from placing A on B
when the world is in situation s. Notice that in the situation calculus, actions are
denoted by first order terms, and situations (world histories) are also first order
terms. For example, do(putdown(A), do(walk(L), do(pickup(A), Sp))) is a situation
denoting the world history consisting of the sequence of actions [pickup(A), walk(L),
putdown(A)]. Notice that the sequence of actions in a history, in the order in which
they occur, is obtained from a situation term by reading off its actions from right
to left.

Relations whose truth values vary from situation to situation, called relational
fluents, are denoted by predicate symbols taking a situation term as their last
argument. For example, is_carrying(robot, p, s), meaning that a robot is carrying
package p in situation s, is a relational fluent. Functions whose denotations vary
from situation to situation are called functional fluents. They are denoted by
function symbols with an extra argument taking a situation term, as in loc(robot, s),
i.e., the robot’s location in situation s.

2.2. Axiomatizing Actions and their Effects in the Situation Calculus

Actions have preconditions — necessary and sufficient conditions that characterize
when the action is physically possible. For example, in a blocks world, we might
have:?
Poss(pickup(z), s) =
[(Vz)—holding(z, s)] A nexto(z, s) A —heavy(z).

World dynamics are specified by effect arioms. These describe the effects of a

given action on the fluents — the causal laws of the domain. For example, a robot
dropping a fragile object causes it to be broken:

Poss(drop(r, z), s) A fragile(z,s) D broken(z, do(drop(r, z), s)). (2.1)

Exploding a bomb next to an object causes it to be broken:
Poss(explode(b), s) A nexto(b,z,s) D broken(z,do(explode(b), s)). (2.2)
A robot repairing an object causes it to be not broken:

Poss(repair(r,z),s) D —broken(z, do(repair(r, z), s)). (2.3)

2.3. The Frame Problem

As first observed by McCarthy and Hayes [20], axiomatizing a dynamic world re-
quires more than just action precondition and effect axioms. So-called frame azioms
are also necessary. These specify the action invariants of the domain, namely, those
fluents which remain unaffected by a given action. For example, a robot dropping
things does not affect an object’s colour:

Poss(drop(r, z), s) A colour(y, s) = ¢ D colour(y, do(drop(r, z), s)) = c.

2Tn formulas, free variables are considered to be universally quantified from the outside. This
convention will be followed throughout the paper.

A frame axiom describing how the fluent broken remains unaffected:

Poss(drop(r, z), s) A -broken(y, s) Ay # z V = fragile(y, s)]
D —broken(y, do(drop(r, z), s)).

The problem introduced by the need for such frame axioms is that we can expect
a vast number of them. Only relatively few actions will affect the truth value of a
given fluent; all other actions leave the fluent unchanged. For example, an object’s
colour 1s not changed by picking things up, opening a door, going for a walk, electing
a new prime minister of Canada, etc. This is problematic for the axiomatizer who
must think of all these axioms; it is also problematic for the theorem proving system,
as it must reason efficiently in the presence of so many frame axioms.

2.3.1. WHAT COUNTS AS A SOLUTION TO THE FRAME PROBLEM? Suppose
the person responsible for axiomatizing an application domain has specified all of
the causal laws for the world being axiomatized. More precisely, she has succeeded
in writing down all the effect axioms, i.e. for each fluent F' and each action A which
can cause F’s truth value to change, axioms of the form

Poss(A,s) A R(Z,s) D () F(#,do(A,s)).

Here, R is a first order formula specifying the contextual conditions under which
the action A will have its specified effect on F.

A solution to the frame problem is a systematic procedure for generating, from
these effect axioms, all the frame axioms. If possible, we also want a parsimonious
representation for these frame axioms (because in their simplest form, there are too
many of them).

2.4. A Simple Solution to the Frame Problem

By appealing to earlier ideas of Haas [7], Schubert [29] and Pednault [21], Reiter
[23] proposes a simple solution to the frame problem, which we illustrate with an
example. Suppose that (2.1), (2.2), and (2.3) are all the effect axioms for the fluent
broken, i.e. they describe all the ways that an action can change the truth value of
broken. We can rewrite (2.1) and (2.2) in the logically equivalent form:

Poss(a,s) A[(3r){a = drop(r,z) A fragile(z,s)}
V(3b){a = explode(b) A nexto(b, z,s)}] (2.4)
D broken(z,do(a, s)).
Similarly, consider the negative effect axiom (2.3) for broken; this can be rewritten
as:
Poss(a, s) A (3r)a = repair(r, z) D —broken(z,do(a, s)). (2.5)

In general, we can assume that the effect axioms for a fluent F' have been written
in the forms:

Poss(a,s) A v} (%,a,s) D F(%, do(a,s)), (2.6)

Poss(a,s) A vg(Z,a,s) D —F(Z,do(a,s)). (2.7

Here 'y}'(f, a, s) is a formula describing under what conditions doing the action a
in situation s leads the fluent F' to become true in the successor situation do(a, s);

similarly vz (#, a, s) describes the conditions under which performing a in s results
in F' becoming false in the successor situation. The solution to the frame problem
of [23] rests on a completeness assumption, which is that the causal axioms (2.6)
and (2.7) characterize all the conditions under which action a can lead to a fluent
F(Z) becoming true (respectively, false) in the successor situation. In other words,
axioms (2.6) and (2.7) describe all the causal laws affecting the truth values of the
fluent F'. Therefore, if action a is possible and F(Z)’s truth value changes from
false to true as a result of doing a, then 'y;(;i", a, s) must be true and similarly for a
change from true to false. Reiter [23] shows how to derive a successor state ariom
of the following form from the causal axioms (2.6) and (2.7) and the completeness
assumption.

Successor State Axiom

Poss(a,s) D [F(%,do(a,s)) = v#(F,a,s) V (F(Z,5) A =v5(F,a,s))]

This single axiom embodies a solution to the frame problem. Notice that this axiom
universally quantifies over actions a. In fact, this is one way in which a parsimonious
solution to the frame problem is obtained.
Applying this to our example about breaking things, we obtain the following
successor state axiom:
Poss(a, s) D [broken(z,do(a, s)) =

(3r){a = drop(r,z) A fragile(z,s)} V

(3b){a = explode(b) A nexto(b,x,s)} V

broken(z, s) A =(3r)a = repair(r, x)).

It is important to note that the above solution to the frame problem presupposes
that there are no state constraints, as for example in the blocks world constraint:
(Vs).on(z,y,s) D —on(y,z,s). Such constraints sometimes implicitly contain effect
axioms (so-called indirect effects), in which case the above completeness assump-
tion will not be true. The assumption that there are no state constraints in the
axiomatization of the domain will be made throughout this paper. In [17, 15], the
approach discussed in this section is extended to deal with state constraints, by
compiling their effects into the successor state axioms.

2.5. Axiomatizing an Application Domain in the Situation Calculus

In general, a particular domain of application will be specified by the union of the
following sets of axioms:

Action precondition axioms, one for each primitive action.
Successor state axioms, one for each fluent.
Unique names axioms for the primitive actions.

Axioms describing the initial situation — what is true initially, before any
actions have occurred. This i1s any finite set of sentences which mention no
situation term, or only the situation term Sp.

e Foundational, domain independent axioms for the situation calculus. These
include unique names axioms for situations, and an induction axiom. Since
these play no special role in this paper, we omit them. For details, and for
their metamathematical properties, see Lin and Reiter [17] and Reiter [24].

3. COMPLEX ACTIONS, PROCEDURES AND GOLOG

The previous section outlines a situation calculus-based approach for representing,
and reasoning about, simple actions. It fails to address the problem of expressing,
and reasoning with, complex actions and procedures, for example:

e if car_in_driveway then drive else walk endIf
e while (Fblock) ontable(block) do remove_a_block endWhile

e proc remove_a_block (mz)[pickup(z); putaway(x)] endProc

Here, we have introduced a procedure declaration (remove_a_block), and also the
nondeterministic operator m; (7z)[d(z)] means nondeterministically pick an indi-
vidual z, and for that z, perform J(z). We shall see later that this kind of nonde-
terminism is very useful for robotics and similar applications.

3.1. Complex Actions and Procedures in the Situation Calculus

Our approach will be to define complex action expressions using some additional
extralogical symbols (e.g., while, if, etc.) which act as abbreviations for logical
expressions in the language of the situation calculus. These extralogical expressions
should be thought of as macros which expand into genuine formulas of the situation
calculus. So below, we define the abbreviation Do(d, s, s’), where § is a complex
action expression; intuitively, Do(d,s,s’) will hold whenever the situation s’ is a
terminating situation of an execution of complex action § starting in situation s.
Note that our complex actions may be nondeterministic, that is, may have several
different executions terminating in different situations.
Do is defined inductively on the structure of its first argument as follows:

1. Primitive actions:
Do(a, s, s") s Poss(als],s) A s’ = do(a[s], s).

By the notation a[s] we mean the result of restoring the situation arguments
to any functional fluents mentioned by the action term a (see the next item
immediately below). For example, if a is read(favorite_book(John)), and if
favorite_book is a functional fluent (which means that its value is situation
dependent) then a[s] is read(favorite_book(John, s)).
2. Test actions:
Do(¢7?,s,5") e [s]As =5
Here, ¢ is a pseudo-fluent expression (not a situation calculus formula) which
stands for a formula in the language of the situation calculus, but with all
situation arguments suppressed. ¢[s] denotes the situation calculus formula
obtained from ¢ by restoring situation variable s as the suppressed situation
argument for all fluent names (relational and functional) mentioned in ¢.
Examples: If ¢ is
(Vz).ontable(z) A —on(z, A),

then ¢[s] stands for

(Vz).ontable(z, s) A —on(z, A, s).

If 6 is
(Fz)on(z, favorite_block(Mary)),

then ¢[s] stands for

(Fx)on(x, favorite_block(Mary, s), s).

Sequence:
Do([61;02],s,5") def (3s*).(Do(b1,s,8*) A Do(dq,5*,s")).
Nondeterministic choice of two actions:

Do((d1 | 82),s,s") e Do(81,s,s") V Do(ds, s, s").
Nondeterministic choice of action arguments:
Do((rz) 8(z), s, s') Y (3z) Do(5(2), s, s').

Nondeterministic iteration: Execute § zero or more times.

Do(d*, s, s") o

(VP).{(Vs1)P(s1,51) A (Vs1, s2, s3)[P(s1, s2) A Do(8, s2,53) D P(s1,s3)] }
D P(s,s).

In other words, doing action § zero or more times takes you from s to s iff
(s,s') is in every set (and therefore, the smallest set) such that:

(a) (s1,s1) isin the set for all situations s;.
(b) Whenever (s1, s2) is in the set, and doing ¢ in situation s; takes you to
situation sz, then (s1,s3) is in the set.

The above definition of nondeterministic iteration utilizes the standard sec-
ond order way of expressing this set. Some appeal to second order logic
appears necessary here because transitive closure is not first order definable,
and nondeterministic iteration appeals to this closure.

Conditionals and while-loops can be defined in terms of the above constructs as
follows:

if ¢ then J; else 6, endIf 2 [$7; 6,]|[67; 64,

while ¢ do § endWhile = [[¢?; 6] ; ~¢7].

Procedures

The difficulty with giving a situation calculus semantics for recursive procedure
calls using macro expansion is that there is no straightforward way to macro expand

a procedure body when that body includes a recursive call to itself.

1.

We begin with an auxiliary macro definition: For any predicate symbol P of
arity n + 2, taking a pair of situation arguments:

Do(P(t1, ... tn), 5,8\ < P(ti[s], ... tals], s,).

In what follows, expressions of the form P(¢y,...,t,) occurring in programs
will serve as procedure calls, and we will understand Do(P(t1,...,t,),s,s)
to mean that executing the procedure P on actual parameters ¢1,...,%,

causes a transition from situation s to s’. Notice that in the macro ex-
pansion, the actual parameters (¢;) are first evaluated with respect to the
current situation s (#;[s]) before passing them to the procedure P, so the
procedure mechanism we are defining is call by value. Because we now want
to include procedure calls among our actions, we extend the definition of
complex actions to consist of any expression that can be constructed from
primitive actions and procedure calls using the complex action constructors
of 1 - 6 above.

2. Next, we define a situation calculus semantics for programs involving (recur-
sive) procedures. We suppose, in the standard block-structured program-
ming style, that a GOLOG program consists of a sequence of declarations
of procedures Py, ..., P,, with formal parameters 1, ..., %, and procedure
bodies 41, ...,d, respectively, followed by a main program body dq. Here,
d1,...,0n,00 are complex actions, extended by actions for procedure calls,
as described in 1 above. So a GOLOG program will have the form:

proc Py (¥1) ;1 endProc ; --- ; proc P, (¥,) 0, endProc ; Jg

We define the result of evaluating a program of this form as follows:

Do({proc Py (¥1) 6; endProc ; --- ; proc P, (¥,) 0, endProc ; dg},s,s’)
def VP, ..., Pn).[/\(Vsl, s9, ;). Do(d, s1,s2) D Do(Pi(¥;), 51, s2)]
i=1

D Do(dg, s, s).

This is the situation calculus definition corresponding to the more usual
Scott-Strachey least fized-point definition in standard programming language
semantics (Stoy [32]).3

Examples:

1. Given that down means move an elevator down one floor, define d(n), mean-
ing move an elevator down n floors.

procd(n) (n =0)? | d(n—1); down endProc
2. Parking an elevator on the ground floor:
proc park (m m)[at floor(m)? ; d(m)] endProc
3. Define above to be the test action which is the transitive closure of on.
proc above(x,y) (& = y)? | (7 2)[on(x, 2)7; above(z,y)] endProc
4. clean means put away all the blocks into the box.

proc clean (Ya)[block(z) D in(x, Box)]? |
(m x)[(Vy)—on(y, x)? ; put(x, Box)]; clean endProc

3By using programs as above within the bodies of other procedures, we obtain the tree-
structured nesting of procedures typical of Algol-like languages. Moreover, we get the lexical
scoping rules of these languages for free from our use of the quantifiers in the definition of Do.

5. A GOLOG blocks world program consisting of three procedure declarations
devoted to creating towers of blocks, and a main program which makes a
seven block tower, while ensuring that block A is clear in the final situation.

proc maketower (n) % Make a tower of n blocks.
(mx, m)[tower(z, m)7 ; % tower(x, m) means that there is a tower
% of m blocks, whose top block is z.
if m < n then stack(z,n — m)
else unstack(z, m — n)

endIf]

endProc ;

proc stack (z,n) % Place n blocks on the tower whose top block is x.
n = 07| (ry)[put(y, z); stack(y,n — 1)]

endProc ;

proc unstack (z,n) % Remove n blocks from the tower

% whose top block is x.
n = 07| (my)lon(x,y)? ; movetotable(x) ; unstack(y,n — 1)]
endProc ;

% main: create a seven block tower, with A clear at the end.
maketower(T) ; ~(3z)on(z, A)?

Except for procedures, this formalization draws considerably from dynamic logic
[5]. In effect, it reifies as situations in the object language of the situation calculus,
the possible worlds with which the semantics of dynamic logic is defined. For a
more technical treatment of this macro approach to complex actions, see Levesque,

Lin, and Reiter [14].

3.2. Why Macros?

Programs and complex actions “macro expand” to (sometimes second order) formu-
las of the situation calculus; complex behaviors are described by situation calculus
formulas. But why do we treat these as macros rather than as first class objects
(terms) in the language of the situation calculus? To see why, consider the complex
action

while [(3block)ontable(block)] do remove_a_block endWhile.

Now ask what kind of thing is ontable(block)? Tt is not a fluent, since fluents take
situations as arguments. But it 1s meant to stand for a fluent since the expression
ontable(block) will be evaluated with respect to the current situation of the execu-
tion of the while-loop. To see what must happen if we avoid the macro approach,
suppose we treat complex actions as genuine first order terms in the language of
the situation calculus.

e We must augment this language with new distinguished function symbols 7,
5y |, m, and perhaps while, if then_else.

e Moreover, since a while-loop is now a first order term, the p in while(p, a)
must be a first order term also. But p can be any “formula” standing for a
situation calculus formula, e.g. ontable(block), (3z,y).ontable(z)A—-red(z)V

on(z,y).

10

e

¢ So we must introduce new function symbols into the language: on, ontable,
and, or, exists, not etc. (We need on to distinguish it from the fluent on.)
Now these “formulas” look like genuine terms:

ontable (block),
exists(X, exists(Y, or(and(onﬁle (X), not(;‘c:i(X))), on(X,y)))).

Notice that X and Y here must be constants. In other words, we must
reify fluents and formulas about fluents whose situation arguments have
been suppressed. This makes the resulting first order language much more
complicated.

e Even worse, we must ariomatize the correspondence between these reified
formulas and the actual situation calculus formulas they stand for. In the
axioms for Do, such reified formulas get evaluated as

Do(p?,s,s') = apply(p,s) Ns = 5.

Here, apply(p, s) is true iff the reified formula p, with its situation argument
s restored (so that it becomes a genuine situation calculus formula), is true.
So we have to axiomatize apply. These axioms are schemas over fluents
F and reified formulas p, p1,p2 and the quantified “variables” X of these
expressions.

apply(F(t1,...,tn),s) = F(applyl(t1,s),...,applyl(t,,s),s),

where applyl restores situation arguments to functional fluents. Also needed
are:

apply(and(p1, p2), s) = apply(p1,s) A apply(ps, s),
apply(or(p1, p2), s) = apply(p1, s) V apply(p2, s),

etc.

All of this would result in a much more complex theory. To avoid this technical
clutter, we have chosen to take the above macro route in defining complex actions,
and to see just how far we can push this idea. As we shall see, it is possible to
develop a very rich theory of actions this way.

3.3. Programs as Macros: What Price Do We Pay?

By opting to define programs as macros, we obtain a much simpler theory than
if we were to reify these actions. The price we pay for this is a less expressive
formalism. For example, we cannot quantify over complex actions, since these are
not objects in the language of the situation calculus. This means, for example, that
we cannot synthesize programs using conventional theorem proving techniques, as
in Manna and Waldinger [19]. In their approach to program synthesis, one would
obtain a program satisfying the goal formula Goal as a side effect of proving the
following entailment:

Azioms |= (36, s).Do(4, So, s) A Goal(s).

Here, Azioms are those described in Section 2.5. But the program to be synthesized
is being existentially quantified in the theorem, so that this theorem cannot even
be expressed in our language.

11

On the other hand, many other program properties are, in principle, provable
with our formalism. Moreover, doing so is (conceptually) straightforward precisely
because program executions are formulas of the situation calculus.

1. Correctness: To show that, whenever program ¢ terminates, it leads to a
world situation satisfying property P:

Azioms |= (¥s).Do(4, So, s) D P(s).
Or, the stronger
Awxioms |= (Vso,s).Do(d, sg,s) D P(s).
2. Termination: To show that program § terminates:
Azioms |= (3s)Do(4, So, s).

Or, the stronger
Azioms |= (Vso)(3s)Do(4, s, s).

In other words, our macro account is well-suited to applications where a program
4 is given, and the job is to prove it has some property. As we will see, the main
property we have been concerned with is execution: given § and an initial situation,
find a terminating situation for §, if one exists. To do so, we prove the termination of
d as above, and then extract from the proof a binding for the terminating situation.

3.4. GOLOG

The program and complex action expressions defined above can be viewed as a pro-
gramming language whose semantics is defined via macro-expansion into sentences
of the situation calculus. We call this language GOLOG |, for “alGOIl in LOGic”.
GOLOG appears to offer significant advantages over current tools for applications
in dynamic domains like the high-level programming of robots and software agents,
process control, discrete event simulation, etc. In the next section, we present a
simple example.

4. AN ELEVATOR CONTROLLER IN GOLOG

Here we show how to axiomatize the primitive actions and fluents for a simple
elevator, and we write a GOLOG program to control this elevator.

Primitive actions:

e up(n) — Move the elevator up to floor n.
e down(n) — Move the elevator down to floor n.
o turnoff(n) — Turn off call button n.
e open — Open the elevator door.
e close — Close the elevator door.
Fluents:

o current_floor(s) = n — In situation s, the elevator is at floor n.
e on(n,s) — In situation s, call button n is on.

e next_floor(n,s) — In situation s, the next floor to be served is n.

Primitive action preconditions:
Poss(up(n), s) = current_floor(s) < n.

Poss(down(n), s) = current_floor(s) > n.
Poss(open, s) = true.
Poss(close, s) = true.

Poss(turnoff(n),s) = on(n,s).

Successor state axioms:

Poss(a,s) D [on(m,do(a, s)) = on(m, s
A defined fluent.

next_floor(n,s) = on(n,s) A
(Vm).on(m,s) D |m — current_floor(s)| > |n — current_floor(s)|.

This defines the next floor to be served as a nearest floor to the one where the
elevator happens to be.

The GOLOG procedures:
proc serve(n) go_floor(n) ; turnoff(n) ; open ; close endProc.
proc go_floor(n) (current_floor = n)? | up(n) | down(n) endProc.
proc serve_a_floor (m n)[next_floor(n)? ; serve(n)] endProc.
proc control [while (In)on(n) do serve_a_floor endWhile] ; park endProc.
proc park if current_floor = 0 then open else down(0) ; open endIf endProc.

Initial situation:
current_floor(Sy) =4, on(b,Ss) =b=3Vb=5.

Notice that this last axiom specifies that, initially, buttons 3 and 4 are on, and
moreover no other buttons are on. In other words, we have complete information
initially about which call buttons are on. It is this completeness property of the
initial situation which will justify, in part, the Prolog implementation described
below in Section 5.

Running the program:

This is a theorem proving task; we need to establish the following entailment:

Azioms = (3s) Do(control, So, s).*

4S¢ricly speaking, we must prove the sentence (3s) Do(IT; control, Sp, s) where TI is the sequence
of procedure declarations just given. The call to control in this sentence serves as the main
program. See the definition of GOLOG programs and their semantics in Section 3.1 above.

13

Here, Azioms are those of Section 2.5. Notice especially what this entailment says,
and why it makes sense.

o Although the expression Do(control, Sy, s) looks like an atomic formula, Do
is a macro not a predicate, and the expression stands for a much longer sec-
ond order situation calculus sentence. This will mention only the primitive
actions up, down, turnoff, open, close and the fluents current_floor, on,
nezt_floor, as well as the distinguished situation calculus symbols do, Sp,
Poss.

e Because this macro-expanded sentence is legitimate situation calculus, it
makes sense to seek a proof of it from Axioms, which characterize the fluents
and actions of this elevator world.

A successful “execution” of the program, i.e. a successful proof, might return the
following binding for s:

s = do(open, do(down(0), do(close, do(open, do(turnoff(5),

Such a binding represents an execution trace of the GOLOG program for the given
description of the initial situation. This trace, namely, the action sequence

[down(3), turnoff(3), open, close, up(5), turnoff(5), open, close, down(0), open],

would next be passed to the elevator’s execution module for controlling it in the
physical world.

As one can see from the example, GOLOG is a logic programming language in
the following sense:

1. Tts interpreter is a general-purpose theorem prover. In its most general form,
this must be a theorem prover for second order logic; in practice (see Section
6 below, and Levesque, Lin, and Reiter [14]), first order logic is sufficient for
most purposes.

2. Like Prolog, GOLOG programs are executed for their side effects, namely,
to obtain bindings for the existentially quantified variables of the theorem.

5. IMPLEMENTATION AND EXPERIMENTATION

In this section, we discuss an implementation of the GOLOG language in Prolog.
We begin by presenting a very simple version of this interpreter. We then show
how the elevator example above would be written for this interpreter and some
execution traces. We conclude by listing some of the applications currently being

investigated in GOLOG.

5.1. An inlerpreter

Given that the execution of GOLOG involves a finding a proof in second-order logic,
it is perhaps somewhat surprising how easy it is to write a GOLOG interpreter.
Figure 5.1 shows the entire program in CProlog.

The do predicate here takes 3 arguments: a GOLOG action expression, and
terms standing for the initial and final situations. Normally, a query will be of the

FIGURE 5.1. A Golog interpreter in CProlog

:— op(950, xfy, [#]). /* Nondeterministic action choice.*/

do([],S,S). /* This clause and the next are for sequences */
do([E|L],S,81) :- do(E,S,S2), do(L,S82,51).

do(?(P),S,S) :- holds(P,S).

do(E1 # E2,8,S1) :- do(E1,8,S1) ; do(E2,S,S1).

do(if (P,E1,E2),S,81) :- do([?(P),E1] # [?(neg(P)),EQ],S,Sl).
do(star(E),S,S81) :- do([] # [E,star(E)],S,S1).
do(while(P,E),S,S1) :- do([star([?(P),E]),?(neg(P))],S,51).
do(pi(V,E),S,81) :- sub(V,_,E,E1), do(E1,5,S81).

do(E,S8,S81) :- proc(E,E1), do(E1,5,51).

do(E,S,do(E,S)) :- primitive_action(E), poss(E,S).

/* sub(Name,New,Terml,Term2): Term2 is Terml with Name replaced by New. */
sub(X1,X2,T1,T2) :- var(T1), T2 = T1.
sub(X1,X2,T1,T2) :- not var(T1), T1 = X1, T2 = X2.
sub(X1,X2,T1,T2) :- not T1 = X1, T1 =..[F|L1], sub_list(X1,X2,L1,L2),
T2 =..[F|L2].
sub_list (X1,X2,[1,[1).
sub_list(X1,X2,[T1|L1],[T2|L2]) :- sub(X1,X2,T1,T2), sub_list(X1,X2,L1,L2).

holds(and(P1,P2),S) :- holds(P1,S), holds(P2,8).

holds (or(P1,P2),S8) :- holds(P1,S); holds(P2,S).

holds (neg(P),S) :- not holds(P,S). /* Negation by failure */
holds (some(V,P),S) :- sub(V,_,P,P1), holds(P1,8).

form do(e,s0,8), so that an answer will be a binding for the final situation S. In
this implementation, a legal GOLOG action expression e is one of the following:

Le1, ...,enl, sequence.

?(p), where p is a condition (see below).

e1 # ez, nondeterministic choice of e or es.

if(p,e1,ea), conditional.

star(e), nondeterministic repetition.

while(p,e), iteration.

pi(v,e), nondeterministic assignment, where v is an atom (standing for a
GOLOG variable) and e is a GOLOG action expression that uses v.

e a, where a is the name of a user-declared primitive action or defined proce-
dure (see below).

A condition p in the above is either a fluent or an expression of the form and(p1,p2),
or(p1,p2), neg(p), or some(v,p), where v is an atom and p is a condition using
v. In evaluating these conditions, the interpreter uses negation as failure to handle
neg, and consults the user-supplied holds predicate to determine which fluents are
true.

15

In this implementation, a GOLOG application (like the elevator, below) is ex-
pected to have the following parts:

1. a collection of clauses of the form primitive_action(act), declaring each
primitive action.

2. a collection of clauses of the form proc(name,body) declaring each defined
procedure (which can be recursive). The body here can be any legal GOLOG
action expression.

3. a collection of clauses which define the predicate poss(act, situation) for
every primitive action and situation. Typically, this requires one clause per
action, using a variable to range over all situations.

4. a collection of clauses which define the predicate holds(fluent, situation)
for every fluent and situation. Normally, this is done in two parts:

(a) a collection of clauses defining holds(fluent,s0), characterizing which
fluents are true in the initial situation. The clauses need not be atomic,
and can involve arbitrary Prolog computation for determining entail-
ments of the initial database. We make the usual Prolog closed world
assumption on this database.

(b) a collection of clauses defining holds(fluent,do(act, situation)) for
every combination of fluent, primitive action, and situation. Typically,
this is done with a single clause for each fluent, with variables for the
actions and situations. This amounts to writing the successor state
axiom for the fluent.

While this interpreter might appear intuitively to be doing the right thing, at
least in cases where the closed world assumption (CWA) is made, it turns out to
be non-trivial to state precisely in what sense it is correct. On the one hand, we
have the specification of Do as a formula in second order logic, and on the other,
we have the above do predicate, characterized by a set of Horn clauses. The exact
correspondence between the two depends on a number of factors, and we do not
intend to discuss them here. For a formal statement and proof of correctness of
this interpreter, the interested reader should consult the companion paper [14].

Given the simplicity of the characterization of the do predicate (in first-order
Horn clauses), and the complexity of the formula that results from Do (in second-
order logic), a reasonable question to ask is why we even bother with the latter.
The answer is that the definition of do is too weak: it is sufficient for finding a
terminating situation (when it exists) given an initial one,*but it cannot be used to
show non-termination. Consider the program § = [a*; (z # #)7?]. For this program,
we have that =Do(d, s, s’) is entailed for any s and s'; the do predicate, however,
would simply run forever.

On the other hand, the semantics of Prolog is often formulated in terms of
minimal models which, in the case of simple logic programs like the above inter-
preter, have a number of desirable features. Could we not use these ideas instead
of second-order quantification to characterize GOLOG program execution? The
answer is that we could, but only when the set of axioms characterizing the initial
situation Sy can be made part of a logic program. Our specification of Do, on the

5This needs to be hedged: the Prolog interpreter is sufficient only if we assume a breadth-
first execution strategy. Otherwise, GOLOG programs like park in Section 3.1, which terminate
according to Do, could cause do to run forever.

16

other hand, is fully general: it does exactly the right thing even when the axioms
describing the initial situation contain digjunctions, existential quantifications, and
so on. The semantics of logic programs can perhaps be generalized to accommodate
such axioms, but is not clear that the resulting specification would be much simpler
than ours.

We emphasize that the above interpreter relies on the standard Prolog CWA that
the initial database — the facts true in the initial situation Sy —is complete. This was
the case for the logical specification of the elevator example of Section 4. For many
applications, this is a reasonable assumption. For many others this is unrealistic,
for example in a robotics setting in which the environment is not completely known
to the robot. In such cases, a more general GOLOG interpreter is necessary. Such
an interpreter might still make use of Prolog’s backchaining mechanism to reduce
queries about the current situation to queries about the initial situation. In other
words, regression-based query evaluation (Waldinger [34], Pednault [21], Reiter [23])
can be implemented using Prolog. However, answering the regressed queries in the
initial situation would require, in general, the full power of a first order theorem
prover.

5.2. The elevator example

In Figure 5.2, we present clauses defining the previously discussed elevator example,
and in Figure 5.3, we show some queries to the interpreter for this program.

In the first query, we ask the interpreter to repeatedly pick a floor and turn off
its call button until all such buttons are off. The answers show that there are only
two ways to do this: either turn off floor 3 then 5, or do it the other way around.

In the second query, we ask the interpreter to either turn off a call button or
to go a to floor that satisfies the test next floor. Since this predicate has been
defined to hold only of those floors whose button is on, this gives us four choices:
turn off floor 3 or 5, or go to floor 3 or 5.

In the final query, we call the main elevator controller, control, to serve all
floors and then park the elevator. There are only two ways of doing this: serve
floor 3 then 5 then park, or serve floor 5 then 3 then park.Note that we have not
attempted to prune the backtracking to avoid duplicate answers.

5.3. Fzxperimentation

The actual implementation of GOLOG we have been using at the University of
Toronto is in Quintus Prolog and incorporates a number of additional features for
debugging and for efficiency beyond those of the simple interpreter presented here.

For example, one serious limitation of the style of interpreter presented here is
the following: determining if some condition (like current_floor(0)) holds in a
situation involves looking at what actions led to that situation, and unwinding these
actions all the way back to the initial situation. This process is called regression in
the AT planning literature. Doing this repeatedly with very long sequences of actions
can take considerable time. Moreover, the Prolog terms representing situations that
are far removed from the initial situation end up being gigantic.

However, it is possible in many cases to progress the initial database to handle
this (Lin and Reiter [16, 18]). The idea is that the interpreter periodically “rolls
the initial database forward” in response to the actions generated thus far during

17

FIGURE 5.2. The elevator controller

/* Primitive control actions */

primitive_action(turnoff(N)). /* Turn off call button N. */

primitive_action(open). /* Open the elevator door. */
primitive_action(close). /* Close the elevator door. */
primitive_action(up(N)). /* Move the elevator up to floor N.*/
primitive_action(down(N)). /* Move the elevator down to floor N.*/

/* Definitions of Complex Control Actions */

proc(go_floor(N), ?(current_floor(N)) # up(N) # down(N)).
proc(serve(N), [go_floor(N), turnoff(N), open, close]).

proc(serve_a_floor, pi(n, [?(next_floor(n)), serve(n)])).
proc(park, if(current_floor(0), open, [down(0), open])).

/* control is the main loop. So long as there is an active call button,
it serves one floor. When all buttons are off, it parks the elevator. */

proc(control, [while(some(n, on(n)), serve_a_floor), park]).
/* Preconditions for Primitive Actions */

poss (up(N),S) :- holds(current_floor(M),S), M < N.

poss (down(N),S) :- holds(current_floor(M),S), M > N.

poss (open,S) .

poss(close,S).

poss (turnoff (N) ,S) :- holds(on(N),S).

/* Successor state axioms for primitive fluents. %/

holds (current_floor (M) ,do(E,S8)) :- E = up(M) ; E = down(M) ;
not E = up(N), not E = down(N), holds(current_floor(M),S).

holds (on(M) ,do(E,S)) :- holds(on(M),S), not E = turnoff(M).
/* Initial situation. Call buttons: 3 and 5. The elevator is at floor 4. %/
holds(on(3),s0). holds (on(5),s0). holds (current_floor(4),s0).

/* next_floor(N) determines which of the active call buttons should be served
next. Here, we simply choose an arbitrary active call button. */

holds (next_floor(N),S) :- holds(on(N),S).

the evaluation of the program. This progressed database becomes the new initial
database for the purposes of the continuing evaluation of the program. In this way,
the interpreter maintains a database of just the current value of all fluents, and the

18

FIGURE 5.3. Running the elevator program

?- do(pi(n,[?(on(n)) ,turnoff(n)]),s0,S).

S = do(turnoff(3),s0) ;
S = do(turnoff (5),s0) ;
no

?7- do(pi(n, turnoff(n) # ([7(next_floor(n)),go_floor(n)])),s0,S).

S = do(turnoff (3),s0) ;
S = do(turnoff(5),s0) ;
S = do(down(3),s0) ;

S = do(up(5),s0) ;

no

?- do(control,s0,8).

S = do(open,do(down(0) ,do(close,do(open,do(turnoff (5),do(up(5),do(close,
do (open,do (turnoff (3) ,do(down(3),s0)))))))))) ;

S = do(open,do(down(0) ,do(close,do(open,do(turnoff(3),do(down(3) ,do(close,
do (open,do (turnoff (5) ,do(up(5),s0)))))))))) ;

S = do(open,do(down(0) ,do(close,do(open,do(turnoff(5),do(up(5),do(close,
do (open,do (turnoff (3) ,do(down(3),s0)))))))))) ;

S = do(open,do(down(0) ,do(close,do(open,do(turnoff(3),do(down(3) ,do(close,
do (open,do (turnoff (5) ,do(up(5),s0)))))))))) ;

no

distance from the initial situation is no longer a problem.

To evaluate our interpreter and the entire GOLOG framework, we have been
experimenting with various types of applications. The most advanced involves a
robotics application — mail delivery in an office environment [9]. The high-level
controller of the robot programmed in GOLOG is interfaced to an existing robotics
package that supports path planning and local navigation. The system currently

19

works in simulation mode; experiments with a real robot have begun in collabora-
tion with the robotics group at the University of Bonn.

Another application involves tools for home banking [27]. In this case, a number
of software agents written in GOLOG handle various parts of the banking process
(responding to buttons on an ATM terminal, managing the accounts at a bank,
monitoring account levels for a user etc.) and communicate over TCP/TP.

CONGOLOG, a version of the language supporting concurrency (including in-
terrupts, priorities, and support for exogenous actions) is also being implemented,

and experiments with various applications (meeting scheduling, multi-elevator co-
ordination) are under way.

6. DISCUSSION

GOLOG is designed as a logic programming language for dynamic domains. As its
full name (alGOl in LOGic) implies, GOLOG attempts to blend ALGOL program-
ming style into logic. Tt borrows from ALGOL many well-known, and well-studied
programming constructs such as sequence, conditionals, recursive procedures and
loops.

However, unlike ALGOL and most other conventional programming languages,
programs in GOLOG decompose into primitives that in most cases refer to actions in
the external world (e.g. picking up an object or telling something to another agent),
as opposed to commands which merely change machine states (e.g. assignments to
registers). Furthermore, these primitives are formulated by axioms in first-order
logic so their effects can be formally reasoned about. This feature of GOLOG
supports the specification of dynamic systems at the right level of abstraction.

More importantly, GOLOG programs are evaluated with a theorem prover. The
user supplies precondition axioms, one per action, successor state axioms, one per
fluent, a specification of the initial situation of the world, and a GOLOG program
specifying the behavior of the agents in the system. Executing a program amounts
to finding a ground situation term o such that

Azioms |= Do(program, Sy, o).
This is done by trying to prove
Azioms |= (3s) Do(program, S, s),

and if a (constructive) proof is obtained, such a ground term
do(ay, ...do(as,do(a,Sp)) .. .)

is obtained as a binding for the variable s. Then the sequence of actions [a1, as, . . ., an]
is sent to the primitive action execution module. This looks very like logic pro-
gramming languages such as Prolog. However, unlike such general purpose logic
programming languages, GOLOG is designed specifically for specifying agents’ be-
haviors and for modeling dynamic systems. In particular, in GOLOG, actions play
a fundamental role.

There is a body of literature related to the GOLOG project:

1. Dixon’s Amala [3]. Amala is a programming language in a conventional
imperative style. It is designed after the observation that the semantics of
embedded programs should reflect the assumptions about the environment

20

as directly as possible. This is similar to our concern that language primi-
tives should be user-defined, at a high level of abstraction. However, while
GOLOG requires these primitives be formally specified within the language,
Amala does not. One consequence of this is that programs in GOLOG can
be executed by a theorem prover, but not those in Amala.

Classical AT planning work (Green [6] and Fikes and Nilsson [4]). Like
classical AT planning, GOLOG requires primitives and their effects to be
formally specified. The major difference is that GOLOG focuses on high-
level programming rather than plan synthesis at run-time. But sketchy plans
are allowed; nondeterminism can be used to infer the missing details. In
our elevator example, it was left to the GOLOG interpreter to find a legal
sequence of actions to serve all active call buttons. But we can go well
beyond this. As an extreme case, the program

while =Goal do (7 a)[Appropriate(a)?; a] endWhile,

repeatedly selects an appropriate action and performs it until some goal
is achieved. Finding a legal sequence of actions in this case is simply a
reformulation of the planning problem.

Situated automata [26]. GOLOG shares with situated automata the same
philosophy of designing agents using a high level language, and then com-
piling the high-level programs into low-level ones that can be immediately
executed. In the framework considered here, the low-level programs are sim-
ply sequences of primitive actions. In [13], we also consider cases involving
sensing (see below) where no such sequence exists, and it is necessary to
compile to low-level programs containing loops and conditionals.

Shoham’s AGENT-0 programming language [31]. This includes a model of
commitments and capabilities, and has simple communication acts built-in;
its agents all have a generic rule-based architecture; there is also a global
clock and all beliefs are about time-stamped propositions. However, there is
no automatic maintenance of the agents beliefs based on a specification of
primitive actions as in GOLOG and only a few types of complex actions are
handled; there also seems to be less emphasis on having a complete formal
specification of the system.

A number of other groups are also developing formalisms for the specification
of artificial agents. See [35] for a detailed survey of this research.
Transaction logic (Bonner and Kifer [2]). This is a new logic for defining
complex database transactions, and like GOLOG provides a rich repertoire
of operators for defining new transactions in terms of old. These include
sequence, nondeterministic choice, conditionals and iteration. The Bonner-
Kifer approach focuses on the definition of complex transactions in terms
of elementary updates. On the assumption that these elementary updates
successfully address the frame problem, any complex update defined in terms
of these elementary ones will inherit a correct solution to the frame problem.
Unfortunately, Bonner and Kifer do not address the frame problem for these
elementary updates; this task is left to the person specifying the database.
The strategies of McCarthy and Hayes [20]. This is a surprisingly early
proposal for representing complex actions (called strategies) in the situation
calculus. McCarthy and Hayes even appeal to an Algol-like language for rep-

21

resenting their strategies, and they include a mechanism for returning sym-
bolic execution traces, as sequences of actions, of these strategies. Moreover,
they sketch a method for proving properties of strategies. While McCarthy
and Hayes provide no formal development of their proposal, it nevertheless
anticipates much of the spirit and technical content of our GOLOG project.

The version of GOLOG presented here omits some important considerations.
The following is a partial list:

1.

Sensing and knowledge. When modeling an autonomous agent, it is neces-
sary to consider the agent’s perceptual actions, e.g. acts of seeing, hearing,
etc. Unlike ordinary actions that affect the environment, perceptual ac-
tions affect an agent’s mental state, i.e. its state of knowledge. Scherl and
Levesque [28] provide a situation calculus account of knowledge, and within
this setting, show how to solve the frame problem for perceptual actions.
Sensing and knowing how. In the presence of sensing actions, the method
described above for executing GOLOG program is no longer adequate. For
example, suppose the sensing action SENSEp reads the truth value of P, and
the primitives @ and b are always possible. Then the following program P is
perfectly reasonable:

SENSEp;if P then a else b endIf

and should be executable with respect to any initial situation. However, it
is not the case that

Azioms |= Do(P, So, o)

for any ground situation term . That is, at compile time, the agent does not
know the truth value of P and therefore does not know the exact sequence
of primitive actions that corresponds to the execution of this program. We
have considered several possible solutions to this problem. See [11, 13].
Exogenous actions. We have assumed that all events of importance are under
the agent’s control. That is why, in the elevator example, we did not include
a primitive action turnon(n), meaning push call button n. Such an action
can occur at any time, and is not under the elevator’s control. turnon(n) is
an example of an ezxogenous action. Other such examples are actions under
nature’s control — it starts to rain, a falling ball bounces on reaching the floor.
In writing an elevator or robot controller, one would not include exogenous
actions as part of the program, because the robot is in no position to cause
such actions to happen.

Concurrency and reactivity. Once we allow for exogenous events, it becomes
very useful to write programs which monitor certain conditions, and take
appropriate actions when they become true. For example, in the middle
of serving a floor, smoke might be detected by the elevator, in which case,
normal operation should be suspended, and an alarm should be sounded until
the alarm is reset. As mentioned earlier, we are investigating a concurrent
version of GOLOG where a number of complex actions of this sort can be
executed concurrently (at different priorities). We believe that this form
of concurrency allows a much more natural specification of controllers that
need to quickly react to their environment while following predetermined
plans.

22

Continuous processes. Tt is widely believed that, by virtue of its reliance on
discrete situations, the situation calculus cannot represent continuous pro-
cesses and their evolution in time, like an object falling under the influence
of gravity. However, as shown by Pinto [22] and also by Ternovskaia [33],
one can view a process as a fluent — falling(s) — which becomes true at the
time ¢ that the instantaneous action start_falling(t) occurs, and becomes
false at the time ¢ of occurrence of the instantaneous action end_falling(t).
One can then write axioms that describe the evolution in time of the falling
object. Reiter [25] gives a situation calculus account of such natural events
whose behaviors are described by known laws of physics. This means that
one can write GOLOG simulators of such dynamical systems [8]. Moreover,
although we have not yet explored this possibility, the GOLOG programmer
can now write robot controllers which allow a robot to exploit such naturally
occurring exogenous events in its environment.

7. CONCLUSIONS

GOLOG is a logic programming language for implementing applications in dynamic
domains like robotics, process control, intelligent software agents, discrete event
simulation, etc. TIts basis is a formal theory of actions specified in an extended
version of the situation calculus.

GOLOG has a number of novel features, both as a programming language, and
as an implementation tool for dynamic modeling.

1.

Formally, a GOLOG program is a macro which expands during the evalu-
ation of the program to a (usually second order) sentence in the situation
calculus. This sentence mentions only the primitive, user defined actions
and fluents. The theorem proving task in the evaluation of the program is
to prove this sentence relative to a background axiomatization consisting of
the foundational axioms of the situation calculus, the action precondition
axioms for the primitive actions, the successor state axioms for the fluents,
and the axioms describing the initial situation.

GOLOG programs are normally evaluated to obtain a binding for the existen-
tially quantified situation variable in the top-level call (3s) Do(program, Sy, s).
The binding so obtained by a successful proof is a symbolic trace of the
program’s execution, and denotes that sequence of actions which is to be
performed in the external world. At this point, the entire GOLOG compu-
tation has been performed off-line. To effect an actual change in the world,
this program trace must be passed to an execution module which knows how
to physically perform the sequence of primitive actions in the trace.
Because a GOLOG program macro-expands to a situation calculus sentence,
we can prove properties of this program (termination, correctness, etc.) di-
rectly within the situation calculus.

Unlike conventional programming languages, whose primitive instruction set
is fixed in advance (assignments to variables, pointer-changing, etc.), and
whose primitive function and predicate set is also predefined (values and
types of program variables, etc.), GOLOG primitive actions and fluents are
user defined by action precondition and successor state axioms. In the simu-
lation of dynamic systems, this facility allows the programmer to specify his

23

primitives in accordance with the naturally occurring events in the world he
is modeling. This, in turn, allows programs to be written at a very high level
of abstraction, without concern for how the system’s primitive architecture
is actually implemented.

5. The GOLOG programmer can define complex action schemas — advice to
a robot about how to achieve certain effects — without specifying in detail
how to perform these actions. It becomes the theorem prover’s responsibility
to figure out one or more detailed ezecutable sequences of primitive actions
which will achieve the desired effects.

while [(Fblock)ontable(block)] do (7 b)remove(b) endWhile,

is such an action schema; it does not specify any particular sequence in
which the blocks are to be removed. Similarly, the elevator program does
not specify in which order the floors are to be served. On this view of
describing complex behaviors, the GOLOG programmer specifies a skeleton
plan; the evaluator uses deduction, in the context of a specific initial world
situation, to fill in the details. Thus GOLOG allows the programmer to
strike a compromise between the often computationally infeasible classical
planning task, in which a plan must be deduced entirely from scratch, and
detailed programming, in which every little step must be specified.

There are several limitations to the version of GOLOG that has been presented
here. The implementation only works with completely known initial situations.
Adapting GOLOG to work with non-Prolog theories in the initial situation will
require some effort (see [16] for ideas on this). Handling sensing actions requires
the system’s knowledge state to be modeled explicitly [28] and complicates the
representation and updating of the world model. Exogenous events also affect the
picture as the system may no longer know what the actual history is. In many
domains, it is also necessary to deal with sensor noise and “control error” (see [1]
for some initial results).

We are also developing an extended version of the language called CONGOLOG
that supports concurrent processes, interrupts, and differing priorities on processes
(based on an interleaving semantics for concurrent processes) [12]. Techniques for
representing and reasoning about continuous processes (e.g., filling a bathtub) are
also under investigation [25]. Finally, work is also in progress on a multi-agent
distributed version of CONGOLOG for agent-oriented programming applications,
which will support distinct world models for each agent and a library of high-level
communication actions [10]. Notions like ability, goals, commitments, and rational
choice become important in such domains and we are extending our model to deal

with them [30].

REFERENCES

1. Fahiem Bacchus, Joseph Y. Halpern, and J. Levesque, Hector. Reasoning about
noisy sensors in the situation calculus. In Chris S. Mellish, editor, Proceedings
of the Fourteenth International Joint Conference on Artificial Intelligence, pages
1933-1940, Montréal, August 1995. Morgan Kaufmann Publishing.

2. Anthony Bonner and Michael Kifer. An overview of transaction logic. Theoretical
Computer Science, 133:205-265, October 1994.

24

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Michael Dixon. Fmbedded Computation and the Semantics of Programs. PhD
thesis, Department of Computer Science, Stanford University, Stanford, CA, 1991.
Also appeared as Xerox PARC Technical Report SSI.-91-1.

Richard E. Fikes and Nils J. Nilsson. STRIPS: a new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3/4):189-208, 1971.
Robert Goldblatt. Logics of Time and Computation. CSLI Lecture Notes No. 7.
Center for the Study of Language and Information, Stanford University, Stanford,
CA, 2nd. edition, 1987.

Cordell C. Green. Theorem proving by resolution as a basis for question-answering
systems. In B. Meltzer and D. Michie, editors, Machine Intelligence, volume 4,
pages 183-205. American Elsevier, New York, 1969.

Andrew R. Haas. The case for domain-specific frame axioms. In F.M. Brown, ed-
itor, The Frame Problem in Artificial Intelligence: Proceedings of the 1987 Work-
shop, pages 343-348, Lawrence, KA, April 1987. Morgan Kaufmann Publishing.
Todd G. Kelley, Modeling complex systems in the situation calculus: A case study
using the Dagstuhl steam boiler problem. In L..C. Aiello, J. Doyle and S.C. Shapiro,
editors, Principles of Knowledge Representation and Reasoning: Proceedings of the
Fifth International Conference (KR’96), to appear. Morgan Kaufmann Publishers,
San Francisco, CA.

Yves Lespérance, Hector J. Levesque, F. Lin, Daniel Marcu, Raymond Reiter, and
Richard B. Scherl. A logical approach to high-level robot programming — a progress
report. In Benjamin Kuipers, editor, Control of the Physical World by Intelligent
Agents, Papers from the 1994 AAAI Fall Symposium, pages 109-119, New Orleans,
LA, November 1994.

Yves Lespérance, Hector J. Levesque, F. Lin, Daniel Marcu, Raymond Reiter, and
Richard B. Scherl. Foundations of a logical approach to agent programming. In
Working Notes of the 1JCAI-95 Workshop on Agent Theories, Architectures, and
Languages, August 20-25 1995.

Yves Lespérance, Hector J. Levesque, Fangzhen Lin, and Richard B. Scherl. Ability
and knowing how in the situation calculus. In preparation, 1995.

Hector J. Levesque. Concurrency in the situation calculus. In preparation, 1996.
Hector J. Levesque. What is planning in the presence of sensing? In Proceedings
of the Thirteenth National Conference on Artificial Intelligence, pages 1139-1146,
Portland, Oregon, Aug. 4-8, 1996. AAAI Press/The MIT Press.

Hector J. Levesque, Fangzhen Lin, and Raymond Reiter. Defining complex ac-
tions in the situation calculus. Technical report, Department of Computer Science,
University of Toronto, 1996. In preparation.

Fangzhen Lin. Embracing causality in specifying the indirect effects of actions. In
Chris S. Mellish, editor, Proceedings of the Fourteenth International Joint Confer-
ence on Artificial Intelligence, pages 1933-1940, Montréal, August 1995. Morgan
Kaufmann Publishing.

Fangzhen Lin and Raymond Reiter. How to progress a database (and why) L.
logical foundations. In Jon Doyle, Erik Sandewall, and Pietro Torasso, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth
International Conference, pages 425-436, Bonn, Germany, 1994. Morgan Kauf-
mann Publishing.

Fangzhen Lin and Raymond Reiter. State constraints revisited. Journal of Logic
and Computation, 4(5):655-678, 1994.

Fangzhen Lin and Raymond Reiter. How to progress a database 11: The STRIPS
connection. In Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pages 2001-2007, Montreal, Aug. 20-25, 1995.

Zohar Manna and Richard Waldinger. How to clear a block: A theory of plans.
Journal of Automated Reasoning, 3:343-377, 1987.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.
33.

34.

35.

25

John McCarthy and Patrick Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463-502. Edinburgh University Press, Edinburgh, Scotland,
1969.

FEdwin P. D. Pednault. ADIL: Exploring the middle ground between STRIPS and
the situation calculus. In R.J. Brachman, H.J. Levesque, and R. Reiter, editors,
Proceedings of the First International Conference on Principles of Knowledge Rep-
resentation and Reasoning, pages 324-332, Toronto, ON, May 1989. Morgan Kauf-
mann Publishing.

Javier Andrés Pinto. Temporal Reasoning in the Situation Calculus. PhD thesis,
Department of Computer Science, University of Toronto, Toronto, ON, February
1994. Available as technical report KRR-TR-94-1.

Raymond Reiter. The frame problem in the situation calculus: A simple solution
(sometimes) and a completeness result for goal regression. In Vladimir Lifschitz,
editor, Artificial Intelligence and Mathematical Theory of Computation: Papers in
Honor of John McCarthy, pages 359-380. Academic Press, San Diego, CA, 1991.
Raymond Reiter. Proving properties of states in the situation calculus. Artificial
Intelligence, pages 337-351, December 1993.

Raymond Reiter. Natural actions, concurrency and continuous time in the situation
calculus. In L.C. Aiello, J. Doyle and S.C. Shapiro, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Fifth International Conference
(KR’96), 1996, to appear. Morgan Kaufmann Publishers, San Francisco, CA.
Stanley J. Rosenschein and Leslie P. Kaelbling. The synthesis of digital machines
with provable epistemic properties. In Joseph Y. Halpern, editor, Proceedings of
the 1986 Conference on Theoretical Aspects of Reasoning about Knowledge, pages
83-98. Morgan Kaufmann Publishers, Inc., Monterey, CA, 1986.

Shane Ruman. Golog as an agent-programming language: Experiments in devel-
oping banking applications. Master’s thesis, Department of Computer Science,
University of Toronto, Toronto, ON, 1995. In preparation.

Richard B. Scherl and Hector J. Levesque. The frame problem and knowledge-
producing actions. In Proceedings of the Eleventh National Conference on Artificial
Intelligence, pages 689-695, Washington, DC, July 1993. AAAI Press/The MIT
Press.

Len K. Schubert. Monotonic solution to the frame problem in the situation calcu-
lus: An efficient method for worlds with fully specified actions. In H.E. Kyberg,
R.P. Loui, and G.N. Carlson, editors, Knowledge Representation and Defeasible
Reasoning, pages 23-67. Kluwer Academic Press, Boston, MA, 1990.

Steven Shapiro, Yves Lespérance, and Hector J. Levesque. Goals and rational
action in the situation calculus — a preliminary report. In Working Notes of
the AAAIT Fall Symposium on Rational Agency: Concepts, Theories, Models, and
Applications, Cambridge, MA, November 1995.

Yoav Shoham. Agent-oriented programming. Artificial Intelligence, 60(1):51-92,
1993.

Joseph E. Stoy. Denotational Semantics. MIT Press, 1977.

Fugenia Ternovskaia. Interval situation calculus. In Proc. of ECAI’94 Workshop
W35 on Logic and Change, pages 153-164, Amsterdam, August 812, 1994.
Richard Waldinger. Achieving several goals simultaneously. In E. Elcock and
D. Michie, editors, Machine Intelligence 8, pages 94-136. Ellis Horwood, Edin-
burgh, Scotland, 1977.

M.J. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice.
Knowledge Engineering Review, 10, 1995. To appear.

