Timeline-based Planning: Theory and Practice Planning Domains and Non-Flexible Timelines

LOGICA PER L'INFORMATICA

Maggio, 2020 Universita' degli Studi ROMA TRE

Context & Motivations

- Planning for real world problems with explicit temporal constraints is a challenging problem
- Flexible timeline-based Planning and Scheduling (P&S) has demonstrated to be successful in a number of concrete applications
- A remarkable research effort has been dedicated to design, build and deploy timeline-based software environments
- Nevertheless, a formal characterization of flexible timelines and flexible plans was missing
- A rather limited community put efforts to make research in this area

A Running Example: the Satellite Planning Domain

- A generic Planning problem in space domain
- A remote satellite is controlled by a planner and an executive system to accomplish some required tasks
- The satellite can either point to
 - a remote planet using its instruments to produce scientific data
 - an Earth ground communication station downlinking the scientific data previously stored
- A set of operative constraints are to be satisfied:
 - Point the planet to allow observations
 - Point Earth to transmit data to ground station
 - Communicate only if ground station is visible
 - Perform some maintenance operations

Planning Domains

Timeline based planning: synthesis of desired temporal behaviors (timelines) of time varying features (state variables)

The domain specification contains causal laws and constraints that must be obeyed:

- allowed value transitions
- durations of valued intervals
- constraints (synchronization) between different state variables
- information on intervals controllability/uncontrollability

The desired temporal behaviour includes satisfaction of given goals

Planning Domains

Timeline based planning: synthesis of desired temporal behaviors (timelines) of time varying features (state variables)

The domain specification contains causal laws and constraints that must be obeyed:

- allowed value transitions
- durations of valued intervals
- constraints (synchronization) between different state variables
- information on intervals controllability/uncontrollability

The desired temporal behaviour includes satisfaction of given goals

In general, time instants and durations are elements of an infinite set of non negative numbers \mathbb{T} , including 0

For instance, $\mathbb{T}=\mathbb{N}$ (discrete time framework), or $\mathbb{T}=\mathbb{R}_{\geq 0},$ the non-negative real numbers

$$\mathbb{T}^{\infty} = \mathbb{T} \cup \{\infty\}$$

$$x = (V, T, \gamma, D)$$

- x: variable name
- V: set of values
- $T: V \rightarrow 2^{V}$: value transition function
- $\gamma: V \rightarrow \{c, u\}$: controllability tagging function

$$\begin{split} \gamma(\mathbf{v}) &: \ \underline{\text{controllability tag}} \text{ of the value } \mathbf{v}. \\ \gamma(\mathbf{v}) &= u: \ \mathbf{v} \text{ is an uncontrollable value} \\ & (\text{the controller cannot decide its exact duration}) \\ \gamma(\mathbf{v}) &= c: \ \mathbf{v} \text{ is controllable} \end{split}$$

• $D: V \to \mathbb{T} \times \mathbb{T}^{\infty}$: duration function ; $D(v) = (t_{min}, t_{max})$, with $0 \le t_{min} \le t_{max}$

Example

The "pointing mode" and "ground station visibility" state variables

The exact duration of the intervals with values **Communication**, **Visible** and **Not Visible** is uncontrollable.

The Ground station visibility variable is external.

State Variables

$pm = (V, T, \gamma, D)$

- *V* = {*Earth*, *Comm*, . . . }
- T(Earth) = {Comm, Slewing, ... } T(Comm) = {Earth}, ...
- γ(Comm) = u,
 γ(v) = c for the other values
- $D(Earth) = (1, \infty),$ $D(Slewing) = (30, 30), \dots$

$gv = (V', T', \gamma', D')$

- $V' = \{Visible, NotVisible\},\$
- T'(Visible) = {NotVisible}, T'(NotVisible) = {Visible}
- $\gamma(Visible) = \gamma(NotVisible) = u$
- D'(Visible) = (60, 100),D'(NotVisible) = (1, 100)

Temporal Relations

- Temporal relations between intervals $A = [s_A, e_A]$ and $B = [s_B, e_B]$
 - $A \leq_{[lb,ub]}^{start,start} B$ A starts betw $(lb \leq s_B - s_B)$ $A \leq_{[lb,ub]}^{end,end} B$ A ends betw $(lb \leq e_B - e_B)$ $A \leq_{[lb,ub]}^{start,end} B$ A starts betw $(lb \leq e_B - s_B)$ $A \leq_{[lb,ub]}^{end,start} B$ A ends betw
- $A \leq_{[lb,ub]}^{start, start} B \qquad A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ starts}$ $(lb \leq s_B s_A \leq ub)$ $A \leq_{ands}^{end, end} B \qquad A \text{ ands between } lb \text{ and } ub \text{ time units before } B \text{ ends}$

 $A \leq_{[lb,ub]}^{end,end} B$ A ends between *lb* and *ub* time units before *B* ends $(lb \leq e_B - e_A \leq ub)$

- $A \leq_{[lb,ub]}^{start,end} B \qquad A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ ends}$ $(lb \leq e_B s_A \leq ub)$
- $A \leq_{[lb,ub]}^{end,start} B$ A ends between *lb* and *ub* time units before *B* starts $(lb \leq s_B e_A \leq ub)$

Temporal Relations

- Temporal relations between intervals $A = [s_A, e_A]$ and $B = [s_B, e_B]$
 - $\begin{array}{ll} A \leq_{[lb,ub]}^{start,start} B & A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq s_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,end} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ ends} \\ (lb \leq e_B e_A \leq ub) \\ A \leq_{[lb,ub]}^{start,end} B & A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ ends} \\ (lb \leq e_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,start} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq e_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,start} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq s_B e_A \leq ub) \end{array}$

Allen's qualitative temporal relations can be defined

Temporal Relations

- Temporal relations between intervals $A = [s_A, e_A]$ and $B = [s_B, e_B]$
 - $\begin{array}{ll} A \leq_{[lb,ub]}^{start,start} B & A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq s_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,end} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ ends} \\ (lb \leq e_B e_A \leq ub) \\ A \leq_{[lb,ub]}^{start,end} B & A \text{ starts between } lb \text{ and } ub \text{ time units before } B \text{ ends} \\ (lb \leq e_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,start} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq e_B s_A \leq ub) \\ A \leq_{[lb,ub]}^{end,start} B & A \text{ ends between } lb \text{ and } ub \text{ time units before } B \text{ starts} \\ (lb \leq s_B e_A \leq ub) \end{array}$

Allen's qualitative temporal relations can be defined

• Temporal relations between an interval A = [s, e] and a timepoint t

 $A \leq_{[lb,ub]}^{start/end} t$ A starts/ends between *lb* and *ub* time units before t

 $A \geq_{[lb,ub]}^{start/end} t$ A starts/ends between *lb* and *ub* time units after t

Examples

- An operational requirement: the satellite communicates with the Earth only when the ground station is visible (communication is "contained" in visibility)
- A known fact: at the beginning, the satellite is pointing to Earth

Examples

- An operational requirement: the satellite communicates with the Earth only when the ground station is visible (communication is "contained" in visibility)
- A known fact: at the beginning, the satellite is pointing to Earth

In general

$$\begin{aligned} a_0[x_0 = v_0] &\to \exists a_1[x_1 = v_1] \dots a_n[x_n = v_n] . \mathcal{C} \\ &\top &\to \exists a_1[x_1 = v_1] \dots a_n[x_n = v_n] . \mathcal{C} \end{aligned}$$

Formulae: positive boolean formulae (PBFs) made up of "atoms" (temporal relations where intervals are replaced by token variables)

Examples

- An operational requirement: the satellite communicates with the Earth only when the ground station is visible (communication is "contained" in visibility)
- A known fact: at the beginning, the satellite is pointing to Earth

In general

$$a_0[x_0 = v_0] \to \exists a_1[x_1 = v_1] \dots a_n[x_n = v_n] . C$$
$$\top \to \exists a_1[x_1 = v_1] \dots a_n[x_n = v_n] . C$$

Formulae: positive boolean formulae (PBFs) made up of "atoms" (temporal relations where intervals are replaced by token variables)

$$\begin{array}{rcl} a_0[pm = \textit{Comm}] & \rightarrow & \exists a_1[gv = \textit{Visible}] \,.a_1 \leq_{[0,\infty]}^{\textit{start},\textit{start}} a_0 \land a_0 \leq_{[0,\infty]}^{\textit{end},\textit{end}} a_1 \\ & & (a_1 \textit{ contains } a_0) \\ & \top & \rightarrow & \exists a_1[pm = \textit{Earth}]. \ a_1 \leq_{[0,0]}^{\textit{start}} 0 \end{array}$$

Planning Domains and Goals

- Planning Domain $\mathcal{D} = (SV, \mathcal{S})$
 - SV is a set of state variables (partitioned into planned and external state variables)
 - $\mathcal S$ is a set of synchronization rules
- Goal G = (Γ, Δ)
 - $\Gamma = \{g_1 = (x_1, v_1), \dots, g_n = (x_n, v_n)\}$ (there exist intervals g_i where the variable x_i has the value v_i)
 - Δ (relational goal) is a PBF where only the token variables g₁,...g_n occur (the formula Δ holds for the intervals given in Γ)
 - ${\cal G}$ is represented by the synchronization rule

$$S_{\mathcal{G}} = \top \rightarrow \exists g_1[x_1 = v_1] \dots g_n[x_n = v_n].\Delta$$

Example: $\Gamma = \{g_1 = (pm, Science), g_2 = (pm, Maintenance)\}\$ $\Delta = (g_1 \text{ meets } g_2) \lor (g_1 \text{ before } g_2)$

- Planning Problem $(\mathcal{D}, \mathcal{G}, H)$
 - $\bullet \ \mathcal{D}$ is a planning domain
 - $\bullet \ {\cal G}$ is a planning goal for ${\cal D}$
 - $H \in \mathbb{T}$ is the planning horizon
- When external variables are present, a planning problem also contains an observation, i.e. the information available to the planner about their behavior (details in Cialdea Mayer & Orlandini & Umbrico, ACTA INFORMATICA 2016)

Non-flexible Timelines in a Controllable Context

Let x = (V, T, D) be a state variable (now ignoring the controllability tagging function)

• Token for x:

$$x^j = (v,d)$$
 for $j \in \mathbb{N}$, $v \in V$, $d \in D(v)$

v is the token value: $value(x^{j})$; d is its duration: $duration(x^{j})$

• Timeline for x

$$TL_x = x^0 = (v_0, d_0), x^1 = (v_1, d_1), \dots, x^k = (v_k, d_k)$$

where x^0, \ldots, x^k are tokens for x

- e_k is the temporal horizon of TL_x .
- once a token x^i is embedded in a timeline, its start and end times can be easily computed:

$$start_time(x^i) = \sum_{j=0}^{i-1} d_j$$

$$end_time(x^i) = start_time(x^i) + d_i$$

• A Plan for the state variables in SV is a set of timelines

$$\mathbf{\Gamma L} = \{ TL_{x_1}, \ldots, TK_{x_k} \}$$

where $SV = \{x_1, \ldots, x_k\}$

The plan horizon H is the minimum among the temporal horizons of $TL_{x_1}, \ldots, TL_{x_k}$.

TL describes the behavior of each state variable in SV at least within the time point H.

- **TL** is a solution plan for the problem $\mathcal{P} = (\mathcal{D}, \mathcal{G}, H')$ if
 - it is valid w.r.t. $\mathcal{D} = (SV, S)$, i.e. it satisfies all the synchronizations in S,
 - \bullet it satisfies the synchronization rule representing ${\cal G},$
 - $H \geq H'$ and
 - all the goals are fulfilled before H'

- An example of non flexible plan for the satellite planning domain
- two timelines (pointing mode and ground station visibility)

