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a b s t r a c t

In this work we propose a distributed algorithm to solve the discrete-time average consensus problem on
strongly connected weighted digraphs (SCWDs). The key idea is to couple the computation of the average
with the estimation of the left eigenvector associated with the zero eigenvalue of the Laplacian matrix
according to the protocol described in Qu et al. (2012). The major contribution is the removal of the
requirement of the knowledge of the out-neighborhood of an agent, thus paving the way for a simple
implementation based on a pure broadcast-based communication scheme.

© 2013 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, multi-agent systems have gained an in-
creasing interest from the control theory community. Applications
range from transportation to environmental monitoring (see Oh,
Schenato, Chen, & Sastry, 2007). Distributed algorithms to esti-
mate the status of the system are essential in this context, as they
can help the agents modify their behavior in order to improve the
global response (Gasparri, Fiorini, Di Rocco, & Panzieri, 2012; Ren
& Beard, 2007).

Within several of the works related to this topic, the commu-
nication among agents is modeled using an undirected communi-
cation graph (see Mesbahi & Egerstedt, 2010 and the references
therein). This is founded on the assumptions that the communi-
cation is isotropic, i.e., the employed antenna radiates its power
uniformly in all directions and that its range is the same for all
the agents in the network. Therefore, if an agent can communicate
with another one, the opposite is possible as well. However, this
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assumption is not always realistic in a real world scenario due, for
example, to environmental effects or the radiation pattern of the
agents (Luthy, Grant, & Henderson, 2007).

In this work, we consider a more general scenario where
the communication among the agents is modeled as a directed
graph. In particular, two different communication schemes can
be considered, that is point-to-point or broadcast. We refer to
point-to-point as a communication mechanism where an agent
(sender) transmits a specific message to another agent (receiver),
picking out exactly that agent among all of his neighbors. Note
that this communication scheme requires the sender to know the
neighbors it is going to send the messages to, i.e., each agent
must know its out-neighborhood. In contrast, we refer to broadcast
as a communication mechanism where an agent (sender) can
simply transmit a message which will be received by any other
agent (receivers) within its range of transmission. In our opinion,
this latter communication mechanism represents a better choice
since it can be more easily implemented and provides a higher
robustness to the system.

Our contribution is a novel distributed algorithm to compute
the average consensus over any strongly connected weighted di-
graph, which can be run concurrently with the estimation proce-
dure described in Qu, Li, and Lewis (2012) for the computation
of the left eigenvector associated with the zero eigenvalue of the
Laplacianmatrix and forwhich agents are not required to be aware
of their out-neighborhood. To the best of our knowledge, this work
introduces the first approach suitable for an implementation based
on a pure broadcast communication scheme.
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2. Related works

In this section we review the major contributions available at
the state of the art concerning the average consensus problem on
digraphs.

In Dominguez-Garcia and Hadjicostis (2011), a doubly stochas-
tic weight matrix is computed by an iterative procedure that ad-
justs the outgoing weights of each node. Notably, the fact that the
columns of the weight matrix sum to one at each step, guarantees
that the average consensus can be performed in parallel with re-
spect to the convergence of the weight matrix to a doubly stochas-
tic form.

In Cai and Ishii (2012), the average consensus over a directed
network topology is addressed. The proposed algorithms require
an augmentation of the variables of each agent adding a ‘‘surplus’’
variable to be sent to the different out-neighbors, thus requiring
the knowledge of the out-neighborhood.

In Atrianfar and Haeri (2012), the average consensus problem
is addressed both in the continuous time and in the discrete time
under the assumption of switching network topology. However,
the discrete time consensus algorithm requires the adjacency
matrix to be doubly stochastic.

In Hadjicostis and Charalambous (2013), the discrete-time
average consensus problem in the presence of bounded delays
in the communication links and changing interconnections is
addressed. The proposed ratio-consensus protocol requires that
each agent is aware of the number of its out-neighborhood.

In Dominguez-Garcia and Hadjicostis (2013), the authors
present a class of distributed iterative algorithms to asymptotically
scale a primitive column stochastic matrix to a double stochastic
and demonstrate the application of these algorithms to the average
consensus problem. In particular, each node is in charge of
assigning weights on its outgoing edges based on the weights on
its incoming edges. Thus, the knowledge of the out-neighborhood
is required.

Kempe, Dobra, and Gehrke (2003) propose a gossip-based push-
sum protocol to compute the average based on the assignment
of the weights of the out-going neighbors such that their sum
is unitary or, in other terms, the knowledge of each agent’s out-
degree is required.

Olshevsky and Tsitsiklis (2009) present two different strategies
to compute the average when the graph is not balanced. The first
one requires the exact knowledge of the left eigenvector whereas
the second one assumes bidirectional communications, i.e., an
undirected graph. Compared to these algorithms our approach
can be run on any strongly connected digraph without any prior
knowledge of its left eigenvector.

Consensus in time-varying digraphs is analyzed in Hendrickx
and Tsitsiklis (2013) and Touri (2012), giving conditions on the
sequence of graphs to ensure convergence to aweighted average of
the initial conditions. However, in order to reach the exact average,
the sequence ofmatrices needs to be doubly stochastic or balanced.

Eventually, in Chen, Tron, Terzis, and Vidal (2010) an approach
to solve the average consensus on networks with random packet
losses is presented. In contrast to our approach, this work requires
the agents to send an additional variable keeping track of the
changes in the state variables caused by the neighbors influence.
However, the assumption on the links failure probabilities implies
the existence of bidirectional communications.

3. Preliminaries

Let us consider a set of n agentswhose communication network
is described by a digraph G(V, E) where V = {1, . . . , n} is the set
of nodes and E ⊆ V × V is the set of directed edges, i.e., ordered
pairs of nodes. Let us define the weighted adjacency matrix A(G) ∈
Rn×n as follows: Aij(G) > 0 if (j, i) ∈ E, Aij(G) = 0 otherwise.

Note that Aij(G) > 0 if agent i can receive data from agent j. It
is worthwhile to point out that the previously defined adjacency
matrix is based on the incoming edges of each node. It is assumed
that no self-loops exist in the network, i.e., (i, i) ∉ E . The in-degree
and the out-degree of a node k are given by din(k) =


j Akj(G) and

dout(k) =


j Ajk(G), respectively. The Laplacian matrix is defined
as L(G) = D(G)−A(G), with D(G) the diagonal in-degree matrix
defined as D(G) =


din(1), . . . , din(n)

T
. For the sake of readabil-

ity, the dependency on the graphGwill be omitted in the rest of the
paper. Let us recall that the Laplacian matrix is a non-symmetric
weakly diagonal dominant matrix. It has a zero structural eigen-
value for which the corresponding right eigenvector is the vector
of ones of appropriate size, i.e., L1 = 0.

Let the following assumptions be satisfied throughout the rest
of the paper:

A1 A unique identifier is associated with each agent i of the
network, e.g., the MAC address.

A2 Each agent sends n variables.
A3 Each agent does not know the number of agents receiving its

information (i.e., its out degree).
A4 The network topology of the considered multi-agent system is

described by a static SCWD.

In A1, we assume that each agent can distinguish the information
coming from the other agents according to the identifier of the
sender. In A2, it is assumed that each agent has enough storage size
for the values coming from its in-neighbors. Therefore, the number
of agents belonging to the network is known by each agent. In
A3, it is stated that each agent cannot count the number of its
out-neighbors. Eventually, in A4 we assume that the information
produced by one node is propagated within the network.

4. Decentralized estimation of the left eigenvector

In this section, the distributed procedure for the estimation of
the left eigenvector associated with the zero structural eigenvalue
of the Laplacian matrix encoding an SCWD proposed in Qu et al.
(2012) is briefly reviewed.

Let us consider the Perron matrix C defined as: C = I − β L
with 0 < β < 1

Ψ
and Ψ = maxi{


j≠i Aij} and let agent i have a

variable δi(k) = [δi1(k) · · · δin(k)]T with initial values δij(0) = 1
if i = j, 0 otherwise. At each iteration, the agents update their
variables as follows:

δij(k+ 1) =


p∈Ni∪i

Cipδpj(k), (1)

with Ni = {j ∈ V : (j, i) ∈ E} the in-neighborhood of agent i. Note
that, update rule (1) can be put in vectorial form as: ∆(k + 1) =
C ∆(k), with ∆(k) = [δ1(k), . . . , δn(k)]T . Noting that ∆(0) = I, it
is easy to see that at iteration k, the variable δi(k) contains exactly
the value of the ith row of the matrix Ck.

Let us denote by λCi and λLi , the ith eigenvalue of the Perron
matrix C and of the Laplacian matrix L, respectively, for which
holds: λCi = 1− β λLi . It follows that the two matrices also share
the same set of eigenvectors. In particular for the eigenvalue of
maximum modulus of the Perron matrix C, namely λC1 = 1, to
which corresponds the zero eigenvalue of the Laplacian matrix L,
namely λL1 = 0 we have that C 1 = λC11 and wT C = λC1w

T ,
with wT the left eigenvector associated with λC1 and λL1 .

From the Perron–Frobenius theorem it follows that if the graph
is strongly connected by applying the update rule given in (1), then
limk→∞∆(k) = 1 wT

wT 1 or, in other terms, δi(k) will tend to the
normalized left eigenvectorw of the Laplacianmatrix encoding the
digraph.
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5. Average consensus algorithm

In this section we present a solution to the average consensus
problem on a general SCWD by using the left eigenvector estima-
tion algorithmdescribed in Section 4. For the sake of simplicity and
without loss of generality, let us assume each agent i ∈ V has a
scalar state, namely xi(k) ∈ R, and the elements of the adjacency
matrix are unitary. Let us refer to x(k) ∈ Rn as the state vector
x(k) = [x1(k) x2(k) · · · xn(k)]T and to x(0) ∈ Rn as the initial con-
ditions of the system x(0) = [x1(0) x2(0) · · · xn(0)]T .

Briefly speaking, the average consensus on a digraph is the
problem of computing µ =


i xi(0)/n, where each agent uses

only its locally available information. The discrete time update law
used to solve the consensus problem is given by the following
equation:

xi(k+ 1) = xi(k)+ β

j∈Ni


xj(k)− xi(k)


. (2)

Let us remark that, for each agent, the required information to
compute (2) is obtained by its in-neighbors. The previous equation
can be rearranged in terms of the product between a matrix and a
vector as x(k+ 1) = C x(k).

It is a well established result that with a balanced digraph, the
classical consensus algorithm leads to an average consensus (Carli,
Fagnani, Speranzon, & Zampieri, 2008). Unfortunately, the same
statement does not hold for the general case of digraphs, where
the consensus value is given by µ̄ =


i wixi(0) ≠ µ, with wi the

ith coefficient of the left eigenvector w = 1 associated with the
eigenvalue λC1 introduced before.

In order to reach the average in the case of a general SCWD,
the actual initial conditions x(0) can be opportunely modified as
x̃(0) = x(0)+ Γ so that:

µ =
1
n

n
i=1

xi(0) =
n

i=1

wi

xi(0)+ Γi


, (3)

with Γ = [Γ1 · · · Γn]
T the extra term that needs to be adjusted.

In particular, each component of the initial conditions is required
to satisfy xi(0)

n = wi

xi(0)+ Γi


, which leads to

Γi = xi(0)


1
nwi
− 1


= xi(0)


1− nwi

nwi


. (4)

Let us now assume the left eigenvector to be available at time k =
0. This implies that the vector Γ can also be computed. Therefore,
the average consensus over a digraph can be achieved by following
two different approaches:

(1) fixing the initial conditions x(0) before starting the algorithm,
(2) injecting a suitable exogenous input at any given step k.

In the following, an algorithm based on the second strategy is de-
scribed. To this end, let us first introduce the following proposition.

Proposition 1. The correction term Γ can be equivalently injected at
any iteration k, that is

⟨x(0)+ Γ , w⟩ = ⟨x(k)+ Γ , w⟩ ,

where ⟨·, ·⟩ denotes the inner product in Rn.

Proof. To prove the proposition let us recall the well known prop-
erty of the left eigenvector for discrete time systems ⟨x(k), w⟩ =
λk

C1
⟨x(0), w⟩ . Thus, by linearity of the inner product and with

λC1 = 1, it follows that:

⟨x(0)+ Γ , w⟩ = ⟨x(0), w⟩ + ⟨Γ , w⟩

= ⟨x(k), w⟩ + ⟨Γ , w⟩

= ⟨x(k)+ Γ , w⟩ . �
By assuming the estimate of the eigenvector w to be asymptotic,
it follows that a possible technique to asymptotically achieve the
consensus is to modify the update rule given in Eq. (2) as follows:

xi(k+ 1) = xi(k)+ ϵi(k)

+β

j∈Ni


xj(k)+ ϵj(k)− xi(k)− ϵi(k)


(5)

where the iterative error ϵi(k) is defined as:

ϵi(k) = Γ̃i(k)− Γ̃i(k− 1) (6)

with:

Γ̃i(k) = xi(0)


1
n δii(k)

− 1


(7)

and Γ̃i(−1) = 0. Clearly, from an implementation standpoint, each
agent i broadcasts the quantity x̂i(k) = xi(k) + ϵi(k) at each time
step k.

The modified consensus algorithm can be expressed in vector
form as:

x(k+ 1) = C

x(k)+ ϵ(k)


(8)

with ϵ(k) = [ϵ1(k) · · · ϵn(k)]T the error vector at time k.
Algorithm 1 shows the pseudo-code of the kth iteration of the

average consensus algorithm run by the ith agent.

Algorithm 1 Average Consensus Algorithm

Require: β , xi(k), δi(k), {xj(k)}, {δj(k)} j ∈ Ni

Ensure: xi(k+ 1)

/* Update left eigenvector estimate */

1: δi(k)← δi(k− 1)+


j∈N β(δj(k− 1)− δi(k− 1))

/* Compute exogenous input */

2: ϵi(k)←
xi(0)
n


δii(k− 1)− δii(k)
δii(k− 1)δii(k)


/* Update consensus estimate */

3: xi(k+ 1)← xi(k)+ ϵi(k)+

+β


j∈Ni


xj(k)+ ϵj(k)− xi(k)− ϵi(k)



Proposition 2. Let us assume the multi-agent system applies the
modified consensus algorithm given in Eq. (8). Then it follows that:

lim
k→∞
⟨x(k), w⟩ = ⟨x(0), w⟩ + ⟨Γ , w⟩ . (9)

Proof. Let us consider the update at time k

⟨x(k+ 1), w⟩ = ⟨x(k)+ ϵ(k), w⟩

= ⟨x(k), w⟩ + ⟨ϵ(k), w⟩

= ⟨x(k− 1)+ ϵ(k− 1), w⟩ + ⟨ϵ(k), w⟩

= ⟨x(0), w⟩ +


k

i=0

ϵ(i), w


.

At this point, by noticing that the term
k

i=0 ϵ(i) = Γ̃ (k) is a
telescoping series it follows that:

⟨x(k+ 1), w⟩ = ⟨x(0), w⟩ + ⟨Γ̃ (k), w⟩.

Furthermore by adding and subtracting the quantity ⟨Γ , w⟩ to and
from the right-hand side, it follows that:

⟨x(k+ 1), w⟩ = ⟨x(0), w⟩ + ⟨Γ , w⟩ + ⟨ζ (k), w⟩
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where ζ (k) = [ζ1(k), . . . , ζn(k)]T with ζi(k) = Γ̃i(k) − Γi. Suc-
cessively, due to the convergence properties of the left eigenvector
estimation algorithm we have:

lim
k→∞

ζi(k) = 0, ∀ i ∈ V, (10)

from which it follows:

lim
k→∞
⟨x(k), w⟩ = ⟨x(0), w⟩ + ⟨Γ , w⟩ ,

thus proving the statement. �

The following proposition provides a bound on the disagree-
ment vector ϕ(k) defined as ϕ(k) = x(k)− µ1.

Proposition 3. Let us assume the multi-agent system applies the
modified consensus algorithm given in Eq. (8). Then, the disagreement
vector ϕ(k) can be bounded as:

∥ϕ(k)∥ ≤ χ1 k|λC2 |
k
+ χ2|λC2 |

k, (11)

with ∥ · ∥ the Euclidean norm and χ1, χ2 ∈ R two positive constant
values.

Proof. From Eq. (8) at the kth iteration we have x(k) = Ckx(0) +k−1
j=0 Ck−jϵ(j). From Eqs. (3), (6) and (7) the average can be put in

the form

µ = wT x(0)+
∞
j=0

wT ϵ(j).

The norm of the disagreement vector can be written as:

∥ϕ(k)∥ ≤ ∥Ckx(0)−wT x(0) 1∥  
t1

+

 k−1
j=0

Ck−jϵ(j)−
∞
j=0

wT ϵ(j) 1

  
t2

.

As in Montijano, Montijano, and Sagues (2013), let Q = C −
1wT , whose eigenvalues are λQ1 = 0, with w and wT x(0)1 its
corresponding left and right eigenvectors respectively, while the
rest of the eigenvalues and eigenvectors are the same as for C.
At this point, since Ck


wT x(0)


1 =


wT x(0)


1 and 1wT (x(0) −

wT x(0)1) = 0, we can see that Ck(x(0) − wT x(0)1) = Qk(x(0) −
wT x(0)1), for all k ∈ N, and therefore:

t1 = ∥Qkx(0)−wT x(0)1∥ ≤ ∥Q∥k∥x(0)−wT x(0)1∥

≤ γ1|λC2 |
k
∥x(0)−wT x(0)1∥ ≤ χ21|λC2 |

k, (12)

where χ21 = γ1∥x(0) − wT x(0)1∥ is a constant value with γ1 an-
other constant due to the diagonalization of C.

The following holds for the second term t2:

t2 =

 k−1
j=0


Ck−jϵ(j)−wT ϵ(j) 1


−

∞
j=k

wT ϵ(j) 1


≤

 k−1
j=0


Ck−jϵ(j)−wT ϵ(j) 1

  
t21

+

 ∞
j=k

wT ϵ(j) 1

  
t22

.

Regarding the term t21 we have that:

t21 ≤
k−1
j=0

∥Ck−jϵ(j)−wT ϵ(j) 1∥
≤

k−1
j=0

∥C∥k−j∥ϵ(j)−wT ϵ(j) 1∥

≤

k−1
j=0

γ1|λC2 |
k−j
∥ϵ(j)−wT ϵ(j) 1∥  

t211

,

where:

t211 ≤
√
n ∥ϵ(j)−wT ϵ(j) 1∥∞

≤
√
nmax

i
|xi(0)− wixi(0)|max

i

δii(j− 1)− δii(j)
n δii(j) δii(j)


≤
√
n∥x(0)−wT x(0)1∥max

i

δii(j− 1)− δii(j)
n δii(j) δii(j)

  
t2111

.

Since δii(j)1 = C jei with ei the ith vector of the canonical basis, the
following holds for the term t2111:

t2111 = max
i

|δii(j− 1)− wi + wi − δii(j)|
|n δii(j− 1) δii(j)|

≤ max
i

∥C jei − wi 1∥ + ∥C j−1ei − wi 1∥
n d̄2

≤ max
i

γ1

|λC2 |

j
+ |λC2 |

j−1

∥ei − wi 1∥

n d̄2

≤

γ1|λC2 |
j

1+ 1
|λC2 |

√
2

n d̄2
,

where the fact ∥ei − wi 1∥ ≤
√
2 has been used and d̄ = mini∈V

minj∈N δii(j) > 0.
Therefore, the term t211 is bounded by:

t211 ≤ χ11|λC2 |
j, (13)

with a constant χ11 defined as:

χ11 =

γ1


1+ 1
|λC2 |

√
2

n d̄2
∥x(0)−wT x(0)1∥. (14)

Therefore:

t21 ≤
k−1
j=0

γ1χ11|λC2 |
k
≤ γ1χ11k|λC2 |

k, (15)

and noting that χ1 = γ1χ11 is also constant the first term of the
right hand side of (11) is found.

Regarding the term t22, following the same reasoning as in
Eq. (13), we have that:

∥t22∥ ≤

 ∞
j=k

wT ϵ(j) 1


≤
√
nmax

i

 limj→∞
wiΓ̃i(j)− wiΓ̃i(k− 1)


≤ max

i

√
nxi(0)
n

δii(k− 1)− wi

δii(k− 1)


≤ max

i

√
nxi(0)
d̄ n

Ck−1ei − wi1


≤
γ1∥x(0)∥

√
2

d̄
√
n| λC2 |

|λC2 |
k
≤ χ22|λC2 |

k, (16)
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(a) Communication graph. (b) Left eigenvector estimation. (c) Standard consensus algorithm. (d) Modified consensus algorithm.

Fig. 1. Simulation involving a multi-agent system composed of six agents. Fig. 1(a) depicts the underlying communication graph describing the interaction among the six
agents. Fig. 1(b) shows the left eigenvector estimation carried out by agent 1. Fig. 1(c) shows the standard consensus protocol, where the dotted line represents the average
value. Fig. 1(d) shows the proposed modified consensus protocol.
with χ22 another constant. At this point, by collecting all the terms
given in Eqs. (12), (15) and (16) the bound given in Eq. (11) is ob-
tained with χ2 = χ21 + χ22. �

It is now possible to characterize the convergence rate of the
proposed algorithm as follows.

Corollary 4. The convergence rate of the algorithm is:

rasym = sup
x(0)≠µ

lim
k→∞


∥ϕ(k)∥
∥ϕ(0)∥

1/k

=
λC2

 . (17)

Proof. The proof follows directly from the application of the result
given in Proposition 3.

Notably, in our framework the modified consensus algorithm
runs concurrently with the left eigenvector estimation protocol
and since the two algorithms exhibit the same convergence rate,
it follows that no real overhead is introduced in terms of number
of exchanged packets at the cost of a slightly larger payload.

6. Simulations

In this section, a simulation involving a network of six agents
is considered. The agents run both the classical discrete time
consensus and the modified one proposed in this work along
with the left eigenvector estimation. Fig. 1(a) depicts the agents’
network topology. The initial conditions of the agents are x(0) =
[64 79 4 32 9 60]T , leading to µ = 41.3333. Fig. 1(b) depicts the
estimation process of the left eigenvector associated with the zero
eigenvalue of the Laplacian matrix for Agent 1. Fig. 1(c) depicts the
execution of the standard consensus algorithm. It is worthwhile to
notice that in this case the agents can achieve a consensus because
the graph is an SCD, but the consensus value is different from µ.
Instead, in Fig. 1(d) the execution of the consensus using the mod-
ified algorithm is given. In this case, all the agents obtainµ as their
consensus value.

7. Conclusion

In this work we proposed a distributed algorithm for the
average consensus on any strongly connected weighted digraph
without the knowledge of the agents’ out-neighborhood. The
key idea is to couple the computation of the average with
the estimation of the left eigenvector associated with the zero
eigenvalue of the Laplacian matrix according to the estimation
procedure described inQuet al. (2012). Futureworkwill be focused
on the extension of the proposed approach to work on general
time-varying digraphs.
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