
IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011 707

Multirobot Tree and Graph Exploration
Peter Brass, Flavio Cabrera-Mora, Student Member, IEEE, Andrea Gasparri, Member, IEEE,

and Jizhong Xiao, Senior Member, IEEE

Abstract—In this paper, we present an algorithm for the ex-
ploration of an unknown graph by multiple robots, which is
never worse than depth-first search with a single robot. On trees,
we prove that the algorithm is optimal for two robots. For k
robots, the algorithm has an optimal dependence on the size of
the tree but not on its radius. We believe that the algorithm
performs well on any tree, and this is substantiated by simula-
tions. For trees with e edges and radius r, the exploration time
is less than 2e/k + (1 + (k/r))k−1 (2/k!)rk−1 = (2e/k) +
O((k + r)k−1 ) (for r > k, ≤ (2e/k) + 2rk−1 ), thereby im-
proving a recent method with time O((e/log k) + r) [2], and
almost reaching the lower bound max((2e/k), 2r). The model
underlying undirected-graph exploration is a set of rooms con-
nected by opaque passages; thus, the algorithm is appropriate for
scenarios like indoor navigation or cave exploration. In this frame-
work, communication can be realized by bookkeeping devices be-
ing dropped by the robots at explored vertices, the states of which
are read and changed by further visiting robots. Simulations have
been performed in both tree and graph explorations to corroborate
the mathematical results.

Index Terms—Distributed robotics, mapping, multirobot explo-
ration, path planning.

I. INTRODUCTION

THE exploration of a completely unknown environment by
mobile robots has received attention for as long as there

have been mobile robots, for the first task of an autonomous
robot is to find his way around. This holds whether the robot is
a Mars Rover, which is a household cleaning appliance, or on a
search-and-rescue mission in a collapsed building. The problem
has been well-studied with many different models for a single
robot exploring the environment, under line-of-sight or distance-
sensing constraints, in obstacle-dense or sparse environments,
with various motion constraints and many other model variants.

Manuscript received October 12, 2010; accepted February 23, 2011. Date
of publication March 28, 2011; date of current version August 10, 2011. This
paper was recommended for publication by Associate Editor K. Kyriakopoulos
and Editor D. Fox upon evaluation of the reviewers’ comments. This work
was supported in part by the National Science Foundation of the U.S. under
Grant IIS-0644127. This paper was presented in part at the IEEE International
Conference on Robotics and Automation, Kobe, Japan, 2009.

P. Brass and J. Xiao are with the Departments of Computer Science and
Electrical Engineering, The City College of New York, New York, NY 10031
USA (e-mail: peter@cs.ccny.cuny.edu; jxiao@ccny.cuny.edu).

F. Cabrera-Mora is with the Department of Electrical Engineering, The City
College and The Graduate Center, City University of New York, New York, NY
10016 USA (e-mail: fcabrera-mora@gc.cuny.edu).

A. Gasparri is with the Department of Computer Science, University of Rome
“Roma Tre,” Roma 00146, Italy (e-mail: gasparri@dia.uniroma3.it).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2011.2121170

The situation is much less clear for exploration by multiple
robots.

In this paper, we consider the situation of multiple robots
exploring an obstacle-dense environment, which is modeled as
a graph, from a single starting vertex. The graph is initially un-
known; existence of edges becomes known only when a robot
sees one end of the edge from a vertex, and the other end of
the edge becomes known only when the robot actually follows
that edge. This models an environment of sites with passages
between them, where the passages are opaque: from either end,
it is not clear where the passage goes. All edges have unit length,
and each robot can follow one edge in each time step. In particu-
lar, this study introduces a strategy that explores any tree in time
(2e/k) + O((k + r)k−1), thus improving a recent method with
time O((e/log k) + r) [2]. Our strategy also promises efficient
exploration on general graphs.

The rest of this paper is organized as follows. In Section II, the
state of the art for the exploration problem is given. In Section III,
the model details and the proposed algorithm are described.
In Section IV, a theoretical analysis concerning the algorithm
performance on general graphs and on trees is proposed. In
Section V, a simulation scenario and results in both tree- and
graph-like environments are provided, and finally, in Section VI,
conclusions are drawn, and future work is discussed.

II. RELATED WORK

The previous work on exploration can be roughly divided into
the following classes, according to the underlying model, where
the environment can be

1) a geometric structure represented as union of polygonal
obstacles;

2) a geometric structure represented as raster cells;
3) a graph structure with uniquely identifiable vertices;
4) a graph structure with anonymous vertices that need to be

marked to be recognized;
5) a directed-graph structure.
Each of these models has its motivation, and has been stud-

ied in numerous variants. The first model has been studied
in [3]–[5]; it typically assumes that the robot knows everything
within line-of-sight visibility and is thus related to Art Gallery
problems [6] but differs from watchman tours [7], [8] in that
the polygons are initially unknown. This model is popular in the
computational geometry community, as an example, we cite [9],
where a competitive algorithm to explore the inside of a simple
polygon is given, and [10], where the optimal competitive ratio
is studied.

The second model is more popular in the robotics commu-
nity: The environment is viewed as a grid in which some cells
are open, others are blocked, and still others are unknown or

1552-3098/$26.00 © 2011 IEEE



708 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011

more complicated cell states, as in evidence grids [11]. This
model is more compatible with diverse types of sensing, like
line of sight, fixed radius, limited viewing angle, etc. In this
model, even the exploration of a mostly empty plane might be
nontrivial, which is solved in [12], for instance, by maintaining
and following the frontier of the unexplored terrain; however, in
an obstacle-dense environment, that frontier might decompose
in many components.

The third model is the model assumed in this paper: The
environment is given as a graph, nodes correspond to locations,
and edges correspond to passages between the locations. Edges
are assumed to be opaque: We know where an edge leads only
when we have explored it. This is a natural model, both as an
abstraction of obstacle-dense environments that we may divide
into cells corresponding to the graph nodes and as a model for
state-space exploration when the state transitions work in both
directions. The assumption that the vertices are identifiable,
and will be recognized when revisited, is reasonable in this
context, and is an essential model property. It has long been
known that depth-first search (DFS) is an efficient method to
explore any graph by a single robot in this model at most by
a factor two slower than the optimum exploration strategy. A
number of papers studied the influence of further information
and decreased the factor-two gap for specific graph classes [13],
[14], or simulated breadth-first search, where the robot always
maintains a short return path to the start vertex [15]–[17].

The fourth model, which differs from the third by the nodes
being anonymous, and recognizable only by a marker placed
on them, or by their degree or other abstract-graph properties,
comes from the labyrinth-exploration setting. The question for
the smallest capabilities, like how many “pebbles” or how many
bits of memory, that allow an abstract robot to find its way out of
a labyrinth, is a classic and much-studied question in the theory
of computation [18]–[22]. For real robots, the question seems
irrelevant, since the robot can recognize its position by other
means like odometry, Global Positioning System coordinates,
or a picture of the node environment.

The fifth model, which explores a directed graph, was stud-
ied in [23]. The situation changes fundamentally from the undi-
rected graph by the fact that you cannot go back an edge, and
as such, DFS becomes impossible. This model is equivalent to
exploring the state space of an unknown finite automaton; for
any input, there happens some state transition, which is initially
unknown to us. The states correspond to vertices and the transi-
tions to directed edges, and we recognize states we have visited
before. This has been proposed in [23] as model of learning:
each action makes a change on the outside world. Initially, we
do not know the effect of the actions, but by trying the actions
and recognizing previous states, we acquire knowledge about
the possible actions. This model again has been studied in theo-
retical computing [24]–[26], and [27] and extends the research
to exploring a directed graph by multiple robots.

Of these different exploration models, only the second (i.e.,
grid) has received wider study in the context of multirobot ex-
ploration. A major problem for the grid model is the fusion of the
exploration maps of the individual robots. This problem does not
occur with the graph model, even when starting from a continu-

ous or a grid model. Thus, deriving a graph as a representation is
a reasonable step [28]. The graph might even be made physical
by dropping nodes in the explored region [29], [30]. The frontier
approach is extended to multiple robots in [31]. For multirobot
undirected-graph exploration, which is our underlying model,
the most-relevant paper is [2].

III. ALGORITHM

The proposed multirobot DFS (MR-DFS) algorithm is a natu-
ral adaptation of DFS to parallel search by multiple robots. The
idea of the algorithm is simple: An edge is considered finished,
if a robot followed that edge, and returned by the same edge:
By this, we assume that he has explored everything that can be
reached by that edge. As long as there are unfinished edges, the
robot selects one of them to explore; only if all edges have been
finished, he returns by that edge by which he originally entered
the vertex.

This natural strategy can be used in many settings; most
relevant to real implementation would be a completely asyn-
chronous movement of the robots. For our analysis, we assume
the robots to move synchronously in time steps, and we want to
minimize the total number of time-steps before the robots return
to the start vertex and declare the search finished. In each time
step, we assume that robots standing at the same vertex have an
initial negotiation phase in which they decide which robot takes
which edge. The robots at the same vertex announce one after
another which edge they will follow, each robot’s decision being
based on the edges that are already taken. Since this is a wireless
communication between robots standing at the same vertex, we
can assume it to be instantaneous, and does not contribute to the
duration of exploration.

Beyond this local communication, our algorithm requires
only very weak communication between the robots: A robot
arriving at a vertex must be able to see whether this vertex has
been visited before, and if yes, by which edges robots have left
the vertex and by which edges they have returned. This commu-
nication is classically achieved for human explorers by leaving
chalk marks on the exits; for robots, the first robot to enter a
vertex could drop a bookkeeping device, e.g., a radio frequency
(RF) identification (RFID), on which every robot who visits this
vertex registers the sequence of his entering and leaving edges.
Note that additional communication does not appear useful,
since in our lower bound, we allow complete shared informa-
tion, and the algorithm almost reaches the lower bound even
with this vertex-local information only. Furthermore, this is the
same communication model used in [2].

Algorithm 1 provides a description of the MR-DFS for gen-
eral graphs. On trees, the algorithm becomes simpler since all
robots enter a vertex by the same edge for the first time, coming
from the root, and it cannot happen that a robot reenters a vertex
by a different edge than the one by which he left it. At each
vertex, a bookkeeping device is dropped by the first robot to
visit that vertex, and updated by all further robots on every visit.
MR-DFS requires the following minimal set of information to
be stored at each vertex:

1) the number of edges converging in this vertex;



BRASS et al.: MULTIROBOT TREE AND GRAPH EXPLORATION 709

2) the ID of the robots that have visited this vertex before;
3) for each of these robots, the original entrance edge of the

robot;
4) for each edge, the IDs of the robots entering and leaving

through that edge.
Thus, every edge that is followed by a robot will be recorded,

including the direction, by the bookkeeping devices at either
end. In a real implementation, one has to consider the very
limited-storage capacity of RFID tags and use it most efficiently.
If we assume that each robot entering a vertex will find the same

Fig. 1. Path of two robots after (a) five steps, (b) eight steps, (c) 11 steps, and
(d) 15 steps.

exits and find these in the same sequence (e.g., starting north
and enumerating clockwise), we need to store for each exit only
if a robot has entered the vertex through that exit (therefore, it
is either finished or original entry edge) or, if not, the number
of robots that have left through that edge. This information is
sufficient for the algorithm and its analysis; the actual identity
of the robots need not be stored on the bookkeeping device.

To summarize, each robot running the MR-DFS algorithm
follows essentially a tree, starting at the common start vertex. If
he meets his own tree by a different edge, he immediately leaves
along that edge again (see lines 2 and 3 of Algorithm 1). If he
meets another robot’s tree, they divide the outgoing edges for
exploration, each choosing some unexplored edges, as long as
possible (see lines 12 and 13 of Algorithm 1). At any time and
for each robot that has visited a vertex, there is at most one edge
by which that robot left without returning back. If several robots
jointly explore the outgoing edges of a vertex, and a returning
robot finds no unexplored edge any more, he will join another
robot in the branch the other is just exploring. Only if each
edge has been followed by a robot in both directions, the robot
returns from that vertex by his original entrance edge (see line
7 of Algorithm 1).

Fig. 1 shows two robots exploring a graph from a common
starting vertex, with their path after 5, 8, 11, and 15 steps. The
dotted line represents the path of robot roba , and the dashed line
represents the path of robot robb .

IV. THEORETICAL ANALYSIS

In this section, a theoretical analysis of the MR-DFS algo-
rithm is proposed. The goal is to provide a characterization of
the MR-DFS exploration time on general graphs and trees.

A. Preliminaries

Let us consider a graph G = {V,E} modeling an environ-
ment to be explored. The graph is considered to be completely
explored only if every edge is followed by at least one robot and
all the robots return to the starting vertex. This requirement that



710 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011

the robots return to the starting point at most doubles the ex-
ploration time, since they could just follow their way back. The
number of rounds required in our model to completely explore
the graph is the exploration time tc .

If there is only one robot, the exploration time for a graph is
at least e = |E|, since every edge needs to be followed. If the
underlying graph is a tree, then every edge the robot follows out-
ward he must also use coming back; therefore, the exploration
time is at least 2e. Classical DFS explores any graph with one
robot in 2e steps. Thus, the single-robot scenario has an easy
solution, which is optimal for trees and at most a factor two
slower for arbitrary graphs.

Note that if we aimed to optimize the total number of steps
taken by all robots together, instead of the number of rounds,
then the availability of multiple robots would not help: they still
need to follow 2e edges to explore a tree, and we can do that with
a single robot using DFS; therefore, for that measure, parking
all but one robot at the start vertex and using DFS for that last
robot would be an optimal solution.

If there are k robots available, the best that we can hope for
is a speed up of a factor k. In each round, k new edges are
explored, therefore, we need at least e/k rounds for a general
graph, and 2e/k rounds for a tree. This speed up is not always
possible. If the graph is just one long path of length r from the
starting vertex, one robot would need to travel all the length r
and return back, regardless of the number of robots there might
be available at the common starting vertex. If r is the radius of
the graph, i.e., the longest distance from the starting vertex to
any other vertex, then one of the robots has to reach that vertex
at maximum distance, and come back. Therefore, we have the
following two lower bounds for the exploration time tc :

1) e/k, since each edge needs to be visited by a robot;
2) 2r, since a vertex at maximum distance must be visited.
Therefore, for a given graph G with e edges and radius r,

the lower bound for the exploration time is max(e/k, 2r), and
max(2e/k, 2r), if it is a tree. Since the optimum strategy, which
knows the graph in advance and just has to visit all edges, takes
at least this time, then any algorithm that is within some factor
of that lower bound is competitive and is of interest.

B. Analysis on General Graphs

In order to characterize the exploration time of the MR-DFS
on general graphs, two important properties must be introduced.

Lemma 1: In the MR-DFS algorithm, each edge is used by
each robot at most once in either direction.

Proof: To see the proof of this lemma, we assume that robot
robi follows the edge uv from u to v twice, at times t1 and t2 .
Between these times, robi returns at least once to u. Each time
robi returns by a different edge than vu, he will immediately
go back by the edge by which he came (see lines 2 and 3 of
Algorithm 1). Therefore, robi must return once by vu, but then
he marks uv as finished and will not follow this edge a second
time. �

Lemma 2: In the MR-DFS algorithm, all robots finish their
exploration at the same time step.

Proof: To prove this lemma, let us suppose that a robot rob1
has already returned to the origin and found no further eligible
edge, thereby declaring the search finished, whereas rob2 is still
out at a different vertex at that same time step. The robot rob2 is
connected to the start vertex by his return path vp , vp−1 , . . . , v1 ,
with vp being the current position of rob2 , v1 the start vertex,
and vq−1vq being the original entry edge of rob2 to vq for q =
2, . . . , p.

The edge v1v2 was not eligible for rob1 , otherwise rob1 would
have followed that edge. There are two possible reasons why
an edge can become ineligible; either it is finished, with a robot
going and returning by that edge, or it is the original entry edge
of a robot to that vertex. No edge can be the original entry edge
in both directions, since it becomes ineligible in the opposite
direction as soon as it is first used. Since the edges along the
path v1 , v2 , . . . , vp are original entry edges of the robot r2 , they
cannot be original entry edges in the opposite direction. Thus,
every edge along this path is either finished or eligible. Let
vi−1vi be the last edge on the path v1 , . . . , vp that is finished,
and let rob3 be the robot that finished this edge. Let us consider
the time step when rob3 finished this edge. Since rob2 used the
edge before it was finished, the edge is somewhere on the return
path of rob2 at that time. If rob2 is not at the same vertex as
rob3 , then there is an eligible edge on the return path of rob2
from vi in the direction of rob2 . Thus, rob3 would have followed
that edge instead of returning by vivi−1 . As such, rob2 and rob3
must be at the same vertex at that time step; they both find no
eligible edge, and they return together.

The same argument applies to any previous edge along that
path. At the time immediately before rob2 and rob3 return to-
gether, the edge vi−1vi was still eligible. However, then none of
the earlier edges along that path can be finished, since for each
vertex there is still one eligible edge available. Consequently,
rob1 at the start vertex has still an eligible edge available, thus
giving a contradiction to our initial assumption. �

Let us now state the main result concerning the exploration
time of the MR-DFS algorithm on general graphs.

Theorem 1: The algorithm MR-DFS explores any connected
graph with e edges, traversing each edge, in at most 2e steps.

Proof: The proof of the theorem is a consequence of the
previous lemmas. In particular, according to Lemma 1, a robot
uses each edge at most once in each direction. Therefore, in
the worst-case scenario, all the robots are going to traverse 2e
edges. Furthermore, according to Lemma 2 all the robots finish
the exploration at the same time. At this point, since at each step
only one edge can be traversed, the number of edges that each
robot can traverse is at most 2e. �

Remark 1: An important consequence of Theorem 1 is that
the MR-DFS algorithm explores any graph completely, and is
never worse than classical single-robot DFS.

C. Analysis on Trees

The proposed MR-DFS algorithm is generally much better
on trees than a single-robot DFS.

Fig. 2 shows two robots exploring a tree of degree 4, which
shows the state after five, eight, and 12 steps, and the edges



BRASS et al.: MULTIROBOT TREE AND GRAPH EXPLORATION 711

Fig. 2. Path of two robots after (a) five steps, (b) eight steps, and (c) 12 steps
on a tree of degree 4. (d) Edges traversed by both robots.

used by both robots. Again, the dotted line represents the path
of robot rob1 and the dashed line the path of robot rob2 . At the
beginning, each robot enters a branch that has not been used
before. Only the last branch is entered by both robots. The robot
that entered the last branch second (rob2) meets after two steps
the returning robot (rob1), that entered the branch first, and they
both return together to the starting vertex.

The fundamental property of the MR-DFS algorithm on trees
is the decreasing branching property as described in the follow-
ing lemma. To this end, let us first define an incoming edge of a
vertex as the edge in the direction of the starting vertex and all
other edges as outgoing edges.

Lemma 3: The edges used by several robots form a subtree. If
a vertex is visited by j robots, then among the outgoing edges,
there is at most one edge that is taken by all j robots and at
most i + 1 edges that are taken by at least j − i robots, for
i = 0, . . . , j − 1.

Proof: To prove this lemma, we consider a vertex v that has d
outgoing edges and is entered by j robots. Fig. 3 illustrates the
worst-case situation of the lemma for d = j = 4. Each robot that
enters this vertex chooses an outgoing edge, explores a subtree,
returns to the vertex and chooses another edge, etc., until it finds
no further edges left. Each time it returns from an edge, that edge
becomes finished and unavailable for all robots which have not
already used it. We number the outgoing edges e1 , . . . , ed in the
sequence in which robots return from that edge. Thus, the first
robot to return to v blocks e1 for all those robots that have not
already entered it. Since other robots can have entered e1 only
after all other edges had been entered by at least one robot, then
the following hold.

1) If d ≥ j, no other robot can have entered e1 ; therefore, e1
is used by only one robot;

2) Else, j > d; therefore, at most j − d other robots entered
e1 , and e1 is used by at most j − d + 1 robots.

In the same way, for 1 ≤ a ≤ d, the edge ea is blocked for all
robots that have not entered it at the time the robot on it returns.
Any further robot can have entered this edge only after all d − 1
other edges have been entered by at least one robot; available

Fig. 3. Decreasing branching property: worst-case scenario. Path of the robots
after (a) one step, (b) three steps, (c) six steps, (d) eight steps, (e) ten steps, and
(f) 12 steps.

for that are the j − 1 other robots, which are available a − 1
additional times from their previous returns. Thus, we have the
following.

1) If d − 1 ≥ j + a − 2, no other robot can have entered ea ;
therefore, ea is used by only one robot.

2) Else, d − 1 < j + a − 2, then at most (j + a − 2) − (d −
1) other robots entered ea , and ea is used by at most
j + a − d robots.

Therefore, if j ≥ d, then the d outgoing edges are used by at
most j, j − 1, . . . , j − d + 1 robots. If j < d, then the outgoing
edges are used by at most j, j − 1, . . . , 1, 1, . . . , 1, 1, 1 robots.
This completes the proof of the Lemma. �

Let us now introduce the concept of excess multiplicity μ(ei)
of an edge ei as the number of additional robots after the first
that use that edge. By Lemma 1, each robot uses each edge at
most twice, going out and returning; therefore, for each edge
ei , we have 0 ≤ μ(ei) ≤ k − 1, and the edge is used exactly
2 + 2μ(ei) times. Fig. 4 shows the multiplicity of a subtree
with three outgoing edges being explored by four robots. The
excess multiplicity plays a key role to define an upper bound for
the exploration time of the MR-DFS algorithm, as described by
the following lemma.

Lemma 4: The time that the MR-DFS algorithm takes to
explore a tree with e edges by k robots is given by

tc =
1
k

(
2e + 2

∑
ei

μ(ei)

)
. (1)

Proof: To obtain the bound on the total exploration time, we
just add up the work done by each robot, and divide by k: Since
all the robots finish at the same time, we just count the total
number of edges walked by the robots when they finish. Each



712 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011

Fig. 4. Multiplicity of a subtree with three edges being explored by four
robots.

edge was taken at least once in each direction, plus 2
∑

ei
μ(ei)

additional edges, taken by several robots (multiplicity). �
Lemma 5: The function f(k, r) defined by f(k, 1) =

(
k
2

)
, and

the recursion

f(k, r) =
(

k

2

)
+

k∑
i=2

f(i, r − 1) (2)

is

f(k, r) =
(

k + r

k − 1

)
− k. (3)

Proof: We solve the recursion by repeated application of the
binomial sum(

a

a

)
+

(
a + 1

a

)
+ · · · +

(
b

a

)
=

(
b + 1
a + 1

)
. (4)

We have

f(k, 2) =
(

k

2

)
+

k∑
i=2

f(i, 1)

=
(

k

2

)
+

k∑
i=2

(
i

2

)
=

(
k

2

)
+

(
k + 1

3

)
.

We apply this again and find

f(k, 3) =
(

k

2

)
+

k∑
i=2

f(i, 2)

=
(

k

2

)
+

k∑
i=2

((
i

2

)
+

(
i + 1

3

))

=
(

k

2

)
+

k∑
i=2

(
i

2

)
+

k+1∑
i=3

(
i

3

)

=
(

k

2

)
+

(
k + 1

3

)
+

(
k + 2

4

)
.

From this, we prove

f(k, r) =
(

k

2

)
+

(
k + 1

3

)
+ · · · +

(
k + r − 1

r + 1

)
(5)

by induction, using

f(k, r) =
(

k

2

)
+

k∑
i=2

f(i, r − 1)

=
(

k

2

)
+

k∑
i=2

r−2∑
j=0

(
i + j

2 + j

)

=
(

k

2

)
+

r−2∑
j=0

k∑
i=2

(
i + j

2 + j

)

=
(

k

2

)
+

r−2∑
j=0

(
k + 1 + j

3 + j

)

=
r−1∑
j=0

(
k + j

2 + j

)
.

Finally, we reduce this sum by

f(k, r) =
(

k

2

)
+

(
k + 1

3

)
+ · · · +

(
k + r − 1

r + 1

)

=
(

k

k − 2

)
+

(
k + 1
k − 2

)
+ · · · +

(
k + r − 1

k − 2

)

=
(

k + r

k − 1

)
−

(
k − 1
k − 2

)
−

(
k − 2
k − 2

)

=
(

k + r

k − 1

)
− (k − 1) − 1.

�
Let us now state the main result concerning the exploration

time of the MR-DFS algorithm on trees.
Theorem 2: The MR-DFS algorithm explores a tree with e

edges and radius r using k robots in time is at most

min
(

2e,
2e

k
+

2
k

(
k + r

k − 1

))
<

2e

k
+

(
1 +

k

r

)k−1 2
k!

rk−1 .

(6)
Proof: The proof comes from the observation that the maxi-

mum total excess multiplicity of all multiply used edges together
is the sum of the excess multiplicities of the subtrees entered
from the root, plus the excess multiplicities on the edges from the
root to those subtrees. In a tree of radius r, each subtree entered
from the root has radius at most r − 1, and by Lemma 3, there
is at most one subtree entered by all k robots, at most two sub-
trees entered by k − 1 or k robots, etc., and only at most k − 1
subtrees are entered by two or more robots. All other subtrees



BRASS et al.: MULTIROBOT TREE AND GRAPH EXPLORATION 713

entered from the root are entered only by one robot; therefore,
they contribute no excess multiplicity. Thus, the maximum total
excess multiplicity g(k, r), as a function of the number of robots
k and the radius r, satisfies the recursion

g(k, r) ≤
(

k

2

)
+ g(k, r − 1) + g(k − 1, r − 1)

+ g(k − 2, r − 1) + · · · + g(2, r − 1)

with the boundary condition g(k, 1) = (k − 1) + (k − 2) +
· · · + 1 =

(
k
2

)
. This is the same recursion as the one solved

in Lemma 5, only with ≤ instead of =; therefore, g(k, r) ≤
f(k, r). Thus, the total excess multiplicity is bounded by
g(k, r) ≤

(
k+r
k−1

)
− k. From Lemma 4, this bounds the explo-

ration time as

tc =
1
k

(2e + 2f(k, r)) <
2e

k
+

2
k

(
k + r

k − 1

)
. (7)

To show the growth rate of this expression for k small and r
large, we observe

1
k

(
k + r

k − 1

)
=

(k + r)(k − 1 + r) · · · (2 + r)
k(k − 1)!

<
(k + r)k−1

k!
=

(
1 +

k

r

)k−1 1
k!

rk−1 .

For r≥ k, this is less than 2k −1

k ! rk−1 ≤ rk−1 ; indeed, the coeffi-
cient of rk−1 is rapidly decreasing for larger k and r ≥ k. �

Remark 2: In its dependence on e, this is optimal and improves
the O( e

log k + r) algorithm given in [2]. The dependence on r,
however, is not. This is an interesting bound for trees with many
edges and small radius (trees with high branching factors). The
bound on the total excess multiplicity used in the proof above
views it only as a function of r and k, and leaves e open. This
bound can be reached but only if e is very large compared with
r. To obtain a further improvement along these lines in the
bound would require an analysis with e as third parameter. In
addition, the bound in Lemma 3 can be improved if the number
of robots is larger than the degree: If a robots reach a vertex
with two outgoing edges before the first of these robot returns
to that vertex, they will have distributed equally over the two
edges until one of the two edges is finished by the first returning
robot. At that time, (1/2)a robots will have entered each branch;
therefore, the total multiplicities of the edges are at most a and
(1/2)a, which is much better than a and a − 1 for large a. For
small number of robots, no improvement can be expected, as
the next theorem shows.

For two robots (i.e., k = 2), the following Theorem 2 shows
a type of optimality of MR-DFS: No strategy can guarantee a
better competitive ratio against an optimal explorer, who already
knows the tree and always makes the best choices.

Theorem 3: The MR-DFS algorithm with two robots explores
a tree with e edges and radius r in time at most e + r. This is at
most 3/2 of the optimum exploration time, and no algorithm for
two robots guarantees a factor less that 3/2.

Proof: For two robots (i.e., k = 2), Lemma 3 implies that
the subtree used by both robots does not branch; therefore,
it is a path with length at most r. Thus,

∑
i μ(ei) ≤ r. By

Fig. 5. Example of different tree-generation methods used for the simulations.
(a) Long tree. (b) Wide tree. (c) N-ary tree (i.e., N = 5).

Lemma 4, the exploration time is at most (1/2)(2e + 2r) =
e + r, as claimed by the theorem. Furthermore, as explained in
Section IV-A, the general lower bound of the exploration time
of a tree using two robots is max(2e

2 , 2r) = max(e, 2r), and
e + r ≤ 3

2 max(e, 2r).
1) For r ≤ 1

2 e, we have that max(e, 2r) = e, and e + r ≤
3
2 e.

2) For r ≥ 1
2 e, we have max(e, 2r) = 2r, and e + r ≤ 3r =

3
2 2r.

This proves the upper bounds of the theorem.
To see that no algorithm can guarantee a better approximation

ratio than 3/2 for the optimum exploration time, we use an
adversarial construction. Let us consider a graph that has three
branches, with two of length t and one of length 2t. This tree
can be optimally explored by two robots in time 4t: One robot
explores the two short branches, the other explores the one long
branch. However, any algorithm finds out whether a branch is
a short branch or a long branch only after a robot has reached
the end of the branch. Thus, an adversary who reveals the graph
as it is explored can always make the last branch to be explored
a long branch; therefore, any algorithm can be forced to take
exploration time at least 6t. Thus, no algorithm for two robots
gives a better competitiveness ratio than the 3/2 achieved by the
MR-DFS algorithm. �

Remark 3: The adversarial construction described above is the
special case of a general construction described in [2] and [32],
which shows that with k robots, no strategy can guarantee a
competitive factor better than 2 − (1/k).

V. SIMULATION RESULTS

Two set of simulations were performed in order to corroborate
the most-important results of this paper, i.e., Theorems 2 and
3. To do so, the algorithm was run in three different scenarios:
long, wide, and full N-ary trees (from now onward, we will refer
to full N-ary trees as simply “N-ary trees”). Examples of these
scenarios are shown in Fig. 5. The size of the tree was increased
(in long and wide trees) by increasing the number of edges. In
N-ary trees, the size of the tree was defined by the number of
children N that each vertex was allowed to have and by the
radius of the tree.



714 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011

Fig. 6. Comparison of exploration times and bounds of exploration with long
trees of increasing number of vertices using (a) two robots, (b) three robots,
(c) five robots, and (d) 20 robots.

The way the robots were distributed in a vertex is as follows:
Let us assume k robots arrive at a vertex v that has ev downward
unexplored edges. The k robots will distribute themselves in the
most homogeneous way possible where the maximum differ-
ence in the number of robots in every edge is equal to one. As
an example, let us consider five robots arriving at a vertex with
three unexplored downward edges: two of those edges will be
taken by two robots and the last edge will be taken by only
one robot. The idea is to obtain the maximum parallelism in
the exploration process. For long and wide trees, since the same
number of edges e can produce very different configurations of
trees (each one with a different exploration time), we performed
100 runs of the simulation per each value of e. The results of
the first set of simulations are shown in Figs. 6 and 7. The plots
show the upper bound defined by Theorem 2, the lower bound
[i.e., max(2e/k, 2r)], and the exploration time (i.e., mean of
100 runs) due to different numbers of robots exploring the tree.

For N-ary trees, only one simulation per tree configuration
was run since, due to the symmetry of the tree, the algorithm
will make the robots explore the tree in the same way all the
time. The plots in Fig. 8 show the upper bound (i.e., straight
line) and exploration time (i.e., dashed line) for this type of tree
when the exploration is performed by different number of robots
from 2 to 6. The results for lower bound were not shown in order
to simplify the reading of the plots.

From the results of this set of simulations (see Figs. 6–8), we
can observe that the bounds of exploration, as defined in this
paper, hold at all times. An interesting result is shown in Figs. 6
and 7 when using two robots; the curve of the upper bound of
Theorem 2 matches tightly that of the actual exploration time of

Fig. 7. Comparison of exploration times and bounds of exploration with wide
trees of increasing number of vertices using (a) two robots, (b) three robots,
(c) five robots, and (d) 20 robots.

the algorithm. In particular, in wide trees, the analysis presented
in Section IV produces bounds of exploration that perfectly
enclose the exploration time. Let us recall that tightness on the
bounds of exploration is desired in order to perform estimations
on the actual exploration time when no explicit expression for
this exploration time has been found (like in this case).

From the results on wide trees (see Fig. 7), it is evident
that our lower bound is very close to the exploration time. As
such, it suggests that the existence of a linear function of k, r,
and e that actually defines the exploration time, or that, at least,
upper-bounds it more tightly. The results on all trees corroborate
Remark 2, since our upper bound is indeed prevalent on trees
with many edges and small radius (wide trees), particularly
when using a small number of robots. For long trees, the upper
bound is basically defined by 2e.

The results on all trees also show that our MR-DFS algorithm
is effective in reducing the exploration time when increasing the
number of robots and that this exploration time is, at all times,
better than the single-robot DFS approach (which is a desired
characteristic of any multirobot strategy). Finally, we can ob-
serve from the simulations that when increasing the number of
robots, the exploration time of the algorithm is brought down
closer to the lower bound, i.e., the exploration time is reduced
closer to the optimal time of exploration.

Fig. 9 shows the behavior of the algorithm on a tree with
a fixed configuration when using up to 15 robots. The fixed
configuration corresponds to an N-ary tree (i.e., N = 7) and a
radius of 5. The plot clearly shows how the exploration time
is consistently reduced when more robots are included in the
system.



BRASS et al.: MULTIROBOT TREE AND GRAPH EXPLORATION 715

Fig. 8. Comparison between (straight line) upper bound and (dashed line)
exploration time on N-ary trees of increasing radius and different number of
robots. Subfigures from top to bottom, respectively, show the curves for N = 2,
N = 3, and N = 5.

A second set of simulations was performed to corroborate the
statement of Theorem 3: With two robots, the upper bound of
the exploration time is e + r. Fig. 10 shows the results for long
and wide trees.

The plots show that the upper bound holds at all times and
that, as expected, it is tight with respect to the actual exploration
time. Fig. 10 also allows us to observe, in detail, the performance
of the algorithm using two robots and how it contrasts with the
result of single-robot DFS: In wide trees, the average reduction

Fig. 9. Exploration time for increasing number of robots in a tree with a fixed
configuration (N-ary tree with N = 7 and r = 5).

Fig. 10. Comparison between the exploration time and the upper bound de-
fined in Theorem 3 on (left) long and (right) wide trees of increasing number of
edges using two robots.

in the exploration time is approximately 50%, whereas in long
trees, the reduction averages 30%.

VI. CONCLUSION

In this paper, we have proposed an algorithm MR-DFS for
the exploration of an unknown undirected graph, which is guar-
anteed to succeed on any graph, which is never worse than
classical single-robot DFS, and which on trees we have proved
to be optimal for two robots and have optimal dependence on
the size of the tree, but not its radius, for k robots. In this specific
graph-exploration scenario, the robots are initially all located at
a common starting vertex, they discover the existence of an edge
only when they see one end of it, and know where an edge leads
only when they have followed it. Vertices that have been visited
before are recognized.

The proposed algorithm needs only a local-communication
model, where communication happens only between a robot and
a bookkeeping device left at that node, or between robots stand-
ing simultaneously at the same node. Therefore, the robots are
almost completely unaware of the actions of the other robots.
The bookkeeping devices are not in contact with each other;
they could be replaced by a piece of chalk leaving marks on the



716 IEEE TRANSACTIONS ON ROBOTICS, VOL. 27, NO. 4, AUGUST 2011

possible exits of the rooms. This is a much weaker communica-
tion assumption than global shared information; if global shared
information is available, no bookkeeping devices are needed.
The exploration algorithm will even succeed if some robots are
lost or destroyed. As long as there are edges that are not marked
as finished, some other robot will follow up that edge. If there is
at least one robot left, only an incorrect finished mark can keep a
vertex from being visited. Destroying or manipulating the marks
on the bookkeeping devices can prevent the exploration from
success: Erasure of finished marks can keep the algorithm from
terminating.

In addition to our theoretic analysis, several simulations have
been performed in order to corroborate the mathematical results
previously described. The result of the simulations show that
our analysis on trees produces upper and lower bounds on the
exploration time that are close to the actual exploration time of
the algorithm, particularly when considering two robots. The
simulations also show that the algorithm effectively reduces the
exploration time when the number of robots is increased and
that this exploration time is, at all times, better than when using
the single-robot-DFS approach. Moreover, it can be seen how
the performance of the algorithm reaches closer to the optimal
exploration time when more robots are used to perform the
exploration.

The analysis of this algorithm was only for trees; the next
most-important theoretical problem is to provide an analysis
for general graphs. No bounds on multirobot exploration of
general graphs in this scenario are known. The bound for trees
could be improved, perhaps even giving optimality for further
small numbers of robots, and the most-important problem for
the practical applicability of this algorithm is to remove the
assumption of robot movement in time steps; the real-robot
movement is asynchronous, and the algorithm itself makes no
assumption on synchronization, i.e., artifact of the analysis.

ACKNOWLEDGMENT

Part of this study was carried out during A. Gasparri’s stay at
The City College of New York Robotics Laboratory as a Visiting
Researcher in the Summer of 2008.

REFERENCES

[1] P. Brass, A. Gasparri, F. Cabrera-Mora, and J. Xiao, “Multi-robot tree
and graph exploration,” in Proc. IEEE Int. Conf. Robot. Autom., 2009,
pp. 2332–2337.

[2] P. Fraigniaud, L. Gasieniec, D. Kowalski, and A. Pelc, “Collective tree
exploration,” Networks, vol. 48, pp. 166–177, Oct. 2006.

[3] C. Papadimitriou and M. Yanakakis, “Shortest paths without a map,”
Theor. Comput. Sci., vol. 84, pp. 127–150, 1991.

[4] X. Deng, T. Kameda, and C. Papadimitriou, “How to learn an unknown
environment,” in Proc. IEEE 32nd Annu. Symp. Found. Comput. Sci,
Piscataway, NJ: IEEE Comput. Soc. Press, 1991, pp. 298–303.

[5] A. Blum, P. Raghavan, and B. Schieber, “Navigating in unfamiliar geo-
metric terrain,” in Proc. 23rd Annu. ACM Symp. Theory Comput, New
York: ACM, 1991, pp. 494–504.

[6] J. O’Rourke, Art Gallery Theorems and Algorithms. London, U.K.:
Oxford Univ. Press, 1987.

[7] W. Chin and S. Ntafos, “Optimum watchman routes,” in Proc. 23rd Annu.
ACM Symp. Comput. Geometry, 1986, pp. 24–33.

[8] S. Ntafos and L. Gewali, “External watchman routes,” Vis. Comput.,
vol. 10, pp. 474–483, Aug. 1994.

[9] F. Hoffmann, C. Icking, R. Klein, and K. Kriegel, “The polygon explo-
ration problem,” SIAM J. Comput., vol. 31, pp. 577–600, 2001.

[10] R. Fleischer, T. Kamphans, R. Klein, E. Langetepe, and G. Trippen, “Com-
petitive online approximation of the optimal search ratio,” SIAM J. Com-
put., vol. 38, pp. 881–898, 2008.

[11] H. Moravec, “Sensor fusion in certainty grids for mobile robots,” AI Mag.,
vol. 9, pp. 61–74, 1988.

[12] B. Yamauchi, “Frontier-based approach for autonomous exploration,” in
Proc. IEEE Int. Symp. Comput. Intell., Robot. Autom., 1997, pp. 146–151.

[13] P. Panaite and A. Pelc, “Impact of topographic information on graph
exploration efficiency,” Networks, vol. 36, pp. 96–103, Sep. 2000.

[14] A. Dessmark and A. Pelc, “Optimal graph exploration without good
maps,” in Proc. European Symposium on Algorithms (LNCS, vol. 2461).
New York: Springer-Verlag, 2002, pp. 374–386.

[15] B. Awerbuch, M. Betke, R. Rivest, and M. Singh, “Piecemeal graph ex-
ploration by a mobile robot,” in Proc. 8th Annu. ACM Conf. Comput.
Learning Theory, 1995, pp. 321–328.

[16] B. Awerbuch and S. Kobourov, “Polylogarithmic-overhead piecemeal
graph exploration,” in Proc. 11th Annu. ACM Conf. Comput. Learning
Theory, New York: ACM, 1998, pp. 280–286.

[17] C. Duncan, S. Kobourov, and V. Kumar, “Optimal constrained graph
exploration,” ACM Trans. Algorithms, vol. 2, pp. 380–402, Jul. 2006.

[18] L. Budach, “On the solution of the labyrinth problem for finite automata,”
Elektron. Inform. Verarbeitung Kybern., vol. 11, pp. 661–672, 1975.

[19] F. Hoffmann, One Pebble Does Not Suffice to Search Plane Labyrinth.
(LNCS, vol. 117). New York: Springer-Verlag, 1981.

[20] M. Bender, A. Fernandez, D. Ron, A. Sahai, and S. Vadhan, “The power
of a pebble: exploring and mapping directed graphs,” in Proc. 30th Annu.
ACM Symp. Theory Comput., 1998, pp. 269–278.

[21] H. Wang, M. Jenkin, and P. Dymond, “Enhancing exploration in graph-like
worlds,” in Proc. Can. Conf. Comput. Robot Vis., May 2008, pp. 53–60.

[22] L. Gasieniec, A. Pelc, T. Radzik, and X. Zhang, “Tree exploration with
logarithmic memory,” in Proc. ACM-SIAM Symp. Discrete Algo., 2007,
pp. 585–594.

[23] X. Deng and C. Papadimitriou, “Exploring an unknown graph,” in Proc.
IEEE 33th Annu. Symp. Found. Comput. Sci., 1990, pp. 355–361.

[24] S. Kwek, “On a simple depth-first search strategy for exploring unknown
graphs,” in Proc. Worksh. Algorithms Data Struct. (LNCS, vol. 1272).
Berlin/Heidelberg, Germany: Springer-Verlag, 1997, pp. 345–353.

[25] S. Albers and M. Henzinger, “Exploring unknown environments,” SIAM
J. Comput., vol. 29, pp. 1164–1188, 2000.

[26] R. Fleischer and G. Trippen, “Exploring an unknown graph efficiently,”
in Proc. Eur. Symp. Algorithms (LNCS, vol. 3669). New York: Springer-
Verlag, 2005, pp. 11–22.

[27] S. Das, P. Flocchini, S. Kutten, A. Nayak, and N. Santoro, “Map con-
struction of unknown graphs by multiple agents,” Theor. Comput. Sci.,
vol. 385, pp. 37–48, Oct. 2007.

[28] G. Dudek, M. Jenkin, E. Milios, and D. Wilkes, “Robotic exploration as
graph construction,” IEEE Trans. Robot. Autom., vol. 7, no. 6, pp. 859–
865, Dec. 1991.

[29] M. Batalin and G. Sukhatme, “Coverage, exploration and deployment by
a mobile robot and communication network,” Telecommun. Syst., vol. 26,
pp. 181–196, Jun. 2004.

[30] M. Batalin and G. Sukhatme, “The design and analysis of an efficient
local algorithm for coverage and exploration based on sensor network
deployment,” IEEE Trans, Robot., vol. 23, no. 4, pp. 661–675, Aug.
2007.

[31] B. Yamauchi, “Frontier-based exploration using multiple robots,” in Proc.
2nd Int. Conf. Auton. Agents, New York: ACM, 1998, pp. 47–53.

[32] R. Graham, “Bounds for certain multiprocessing anomalies,” Bell Syst.
Tech. J., vol. 45, pp. 1563–1581, Sep. 1966.

Peter Brass received the Ph.D. degree in mathemat-
ics from the Technical University of Braunschweig,
Braunschweig, Germany, in 1992.

He is currently a Professor of computer
science with The City College of New York.
He was a Postdoctoral Fellow in the Univer-
sity of Greifswald, Germany, and a Heisenberg
Research Fellow of the German National Sci-
ence Foundation before joining The City Col-
lege in 2002. He was an author of books Re-
search Problems in Discrete Geometry (with J.

Pach and W. Moser, Springer, 2005) and Advanced Data Structures
(Cambridge, MA: MIT Press, 2008). His current research interests include
applications of algorithms, graph theory, and geometry in computational geom-
etry, sensor networks, and robotics.



BRASS et al.: MULTIROBOT TREE AND GRAPH EXPLORATION 717

Flavio Cabrera-Mora (S’10) received the B.S. de-
gree in electrical engineering from the Universidad
Nacional de Colombia, Bogota, Colombia, in 1997
and the M.S. degree in 2006 in electrical engineer-
ing from The City College, City University of New
York, where he is currently working toward the Ph.D.
degree in electrical engineering with The Graduate
Center.

His current research interests include mobile
robotics, multirobot systems, and wireless-sensor
networks and its application for the exploration of

unknown environments.

Andrea Gasparri (M’09) received the Graduate de-
gree (cum laude) in computer science in 2004 and the
Ph.D. degree in computer science and automation in
2008, both from the University of Rome “Roma Tre,”
Rome, Italy.

He is currently a Postdoctoral Research Fellow
with the Department of Computer Science and Au-
tomation, University of Rome “Roma Tre.” His cur-
rent research interests include mobile robotics, sensor
networks, and, more generally, networked multiagent
systems.

Jizhong Xiao (SM’06) received the B.S. and M.S.
degrees from the East China Institute of Technology,
Taiyuan City, China, in 1990 and 1993, respectively,
the M.E. degree from Nanyang Technological Uni-
versity, Singapore, in 1999, and the Ph.D. degree
from the Michigan State University, East Lansing,
in 2002.

He is currently an Associate Professor of electri-
cal engineering with The City College of New York
(CCNY). He started the Robotics Research Program
at CCNY in 2002 as the Founding Director of CCNY

Robotics Laboratory. His current research interests include robotics and control,
mobile sensor networks, autonomous navigation, and multiagent systems.

Dr. Xiao received the U.S. National Science Foundation CAREER Award in
2007.


