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Università Roma Tre
Via della Vasca Navale 79, 00146, Roma, Italy
{panzieri,pascucci}@dia.uniroma3.it

Roberto Setola
Lab. Sistemi Complessi & Sicurezza
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Abstract— Real-time applications ask for reduced computa-
tional cost algorithms. In robotic exploration of unstructured
environments the problem is more challenging: several tasks,
at the same time, must be carried on ranging from reactive
behaviours to the building of a structured representation of the
environment itself. Many sensor signals have to be processed at
each step to estimate both landmarks and robot positions. This
mapping aptitude can be implemented through an Extended
Kalman Filter recently proposed in a previous paper. Due
to the large number of estimated variables, and real-time
constraints, the filter is better implemented in its interlaced
version. The novelty of this paper consists in extending the
IEKF filter, removing some hypothesis on the linearity of both
state transition and observation mapping, in order to further
reduce computational burden and then achieve a better trade-
off among computational load and accuracy.

Index Terms— Mobile robotics, SLAM, Sensor fusion

I. INTRODUCTION

Mobile robot operating in real world environments run
several software modules. Among the others, we find the
manager of the map of the area, and a localisation subsystem.
The implemented control architecture includes, very often,
an a priori knowledge of this map, as accurate as possible,
in view of the accomplishment of the requested tasks. In
this framework, the localisation subsystem must have the
profitable skill of providing a reliable estimation of vehicle
position.

The situation is slightly different when both the map and
the robot location are not available from the beginning. In
this case, starting from and unknown position, the robot
will try to explore the environment using its sensors, to
incrementally build an internal representation of the world
containing features of both the environment and the robots
itself. The map, build by the robot, is used back to compute
its pose in the environment [1]. This problem is referred
in literature as simultaneous localisation and map building
(SLAM), and several approaches have been investigated to
solve it after the seminal paper of Smith and Cheeseman [8].
The solution of SLAM has been addressed with approaches
based on Bayesian filtering [4], [1]. These techniques ap-
proximate the probability representation using samples of

probability density distributions [9]. Although they are still
computationally expensive for real time applications, they
present significant advantages in solving the data association
problem.

The approach that is more promising, from the implemen-
tation point of view, is definitely the one that uses the well-
known predictor-corrector structure of the Kalman Filter.
Assuming Gaussian distributions [2] for the errors we have
to build a state-space model including the robot pose and the
landmark positions. Measures coming from the propriocep-
tive sensory system (e.g., encoders, gyro) are used to feed the
prediction step and produce a raw world estimation, while,
the exteroceptive sensors (e.g., range finders, vision system)
are used to refine the estimation producing a new map and
robot location.

Drawbacks of such approach are the memory requirements
and computational loads that quadratically increase with the
number of map objects (beacons). In densely populated
environments, the number of beacons detected will make
those needs to be beyond the power capabilities of computer
resources.

In this paper, we propose a solution to SLAM based on the
Interlaced version of the Extended Kalman Filter (IEKF) [3]
that appears suitable for real-time implementations. Indeed,
this algorithm has a memory occupancy and a computational
load linearly proportional to the number of beacons detected
by the sensory system. IEKF has been proposed by the
authors for the SLAM problem in [6] where experimental
data have shown the good trade-off between accuracy and
computational load obtained via that filter. However, using a
generalised version of IEKF an excellent performance will be
achieved, obtaining, as will be shown, a better convergence
due to the preservation of more coupling effects then version
reported in [6] has.

The algorithm has been experimentally tested using a
robotised wheelchair equipped with a vision system and using
ceiling lamps as natural landmarks. A brief description of the
image processing algorithm will be given in Section II. In
Section III we review the interlaced Kalman filter introduced
in [3], while in Section IV and V we describe respectively



its application to the SLAM case, and the associated com-
putational costs. Experimental results shown in Section VI
conclude the paper.

II. VISION SYSTEM

As stated above, the vision system integrated in the robo-
tised wheelchair should be able to recognise artificial sources
of light during the navigation in an office like environment.

A low cost camera (a web cam) is mounted focusing the
ceiling such that the distance between the image plane and
the landmarks along the focal axis is fixed and known. This
reduce the overall complexity of features extraction, because
also the size (i.e., the area) of the landmarks is fixed and
known.

The image processing algorithm implmented follows the
fundamental steps of image analysis: preprocessing, segmen-
tation, feature extraction.

- Preprocessing
Assuming that the beacon have a frame represen-
tation with large luminance values, a threshold is
applied to obtain a binary image. The key function
of the threshold operation is to improve the image
in way that increases chances for the success of
other processes: indeed, in this step small reflection
are partially removed cause their areas normally
decrease.

- Segmentation
After thresholding, the image is partitioned into its
constituents objects, performing a graph search of
all connected components (blobs). The segmenta-
tion step usually retrieves more than one blob, and,
sometimes reflections can produce small connected
components that can be discriminated evaluating
their area.

- Feature extraction
After segmentation the position of the lamps in the
image plane is obtained applying the well known
formulas for calculating the centre of mass. In
order to improve the quality of this shape, a binary
morphological operator is applied on the connected
components. An opening operation with a circular
structuring element is performed to smooth the
contour and eliminate protrusions.

III. IEKF FILTER

The Interlaced Extended Kalman Filter (IEKF) has been
proposed in [3] to reduce computational load of the estima-
tion process for a class of nonlinear system. The fundamental
idea of the IEKF is derived from the multi- players dynamic
game theory, where the solution of the game is such that each
player chooses its strategy as optimal response to the strategy
chosen by the other players. In the context of estimation,
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Fig. 1. Interlaced Extended Kalman Filter

the players are the estimation algorithm, the strategy is the
estimate, the object function is a measure of the covariance
estimation error. In particular IEKF consists of m parallel
implementations of Kalman Filters (KF). Each KF works
independently by the others and is designed to estimate a
subset of the state variables, considering the remaining parts
as deterministic time varying parameters. The error intro-
duced is partially alleviated increasing the noise covariance
matrices, as explained later and in [3].

For sake of simplicity, let us consider a system whose state
vector can be partitioned into just two subsets, and can be
put in the form
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where the state vector x ∈ Rn has been partitioned into
x(1) ∈ Rn1 and x(2) ∈ Rn2 (with n = n1 + n2), f (i) are
differentiable functions, and ξ

(i)
k ∈ Rni , i = 1, 2 are zero-

mean uncorrelated white process noise vectors characterized
by the covariance matrices Q

(i)
k , i = 1, 2 and uk is the input

vector.
Further, the system is assumed to have an output equation

that can be put into the following equivalent forms [3].
The output equation of the system
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where ψk ∈ Rm is a zero-mean uncorrelated white mea-
surement noise vector characterized by the covariance matri-
ces Rk.



Under these hypothesis, the x(1) dynamic can be con-
sidered as a linear system depending on the time-varying
parameter x(2), i.e., the estimate x̂(1)

k|k is computed using the

predictive estimate x̂(2)
k|k−1 obtained, at the previous step, by

the other filter. Indeed, after replacing x(2)
k with x̂(2)

k|k−1 in (1)
the first subsystem can be considered as a linear time varying
system dependent on the known input f (1)(x̂

(2)
k|k−1, uk). At

the same time, the output equation 2a turns out to be a
linear equation whose matrices C(1) and D(1) depends on
time-varying parameters. Similar considerations holds for the
second subsystem.

Each KF is characterised by the following equations (for
the first filter i = 1 and j = 2, while for the second i = 2
and j = 1):
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where Jf,i
x,j is the Jacobian of f (i) with respect to x(j), P (i)

k|k−1
is the covariance matrix of the estimation error variable
e
(i)
k|k−1 := x

(i)
k − x̂

(i)
k|k−1 for i = 1, 2.

From (3a) and (3c) one can notice that the process and
measurement noise covariance matrices Q(q)

k and Rk are suit-
able increased by addition of positive semi definite quantities
that take into account the error introduced by the decoupling
operation. Indeed, Q̃(i)

k and R̃
(i)
k represent, respectively, the

process and measurement covariance of interlaced errors, and
their components are updated as
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This formulation of IEKF assumes that state transition
mapping and the observation mapping depend both linearly
and affinely on their arguments. If one removes these as-
sumptions, the algorithm can be still applied by linearising,
at each step, each part of the system in the neighbourhood of
the estimations obtained by the other filters at the previous
step.

IV. IEKF SLAM FILTER

In this paper we use IEKF filter to solve the SLAM prob-
lem. In this framework we assume that all uncertainty sources
have unimodal Gaussian distribution and provide a model
for the robot, the beacon positions, and the sensors. The
mobile platform considered is a robot with the kinematics
of an unicycle. The robot is equipped with encoders and
gyro, as proprioceptive sensors, while uses the vision system
presented above as exteroceptive sensor. The measurement
provided by the exteroceptive sensory system are expressed
in the robot coordinates and represent the position of the
beacons in the viewing windows of the web cam. Under the
SLAM framework, the filter is able to localise the robot and
concurrently build a simple geometric map (a list of beacon
positions). During the navigation task, the system detects
new features when exploring new areas. Once those features
become reliable, they are included into the map.
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Fig. 2. Reference frames used in SLAM filter

A. Complete system model

The state of the whole system at the k-th sampling interval
is composed by the configuration of the robot together with
the positions of all the discovered beacons with respect to a
global reference frame (see Fig. 2):

xk = (xr
k

T , xb
k

T
)T . (6)

Define the robot state vector as

xr
k = (px

k, p
y
k, φk, bk)T (7)

where b is the gyro bias, and define the inputs for the robot
model as

uk = (δsk, ωk)T (8)



where δsk is the vehicle displacement and ωk its angular
velocity during the k-th sampling interval.

The robot dynamic is modelled using the equation of the
unicycle model:

xr
k = f(xr

k−1, uk) = (9)
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where φ̃k = φk−1 + (ωk − bk−1δtk)/2 is the average robot
orientation during the sampling time interval δtk.

The beacon state vector is defined as

xb
k = [p1

k, ..., p
N
k ]T (10)

where pi
k = (xi

k, y
i
k) is the location of the i-th beacon in the

global reference frame. The state transition equation for the
beacons can be written as

xb
k = xb

k−1 (11)

since beacons are assumed to be static. Notice that the size of
xb

k is dynamically increased any time a new beacon appears
in the camera image.

The observation equation describes the relation between
robot configuration and position of beacons in the viewing
windows of the web cam (referred as active beacon in from
now on). The observation vector

zk = h(xk) (12)

consists of sub vectors zi
k, i = 1, ...,M , where M is the

number of active beacons and
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being R
φ
k the rotation matrix between the robot reference

frame and the global frame reference (see Fig. 2)

R
φ
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(14)

This system is such that, as shown in [6], can be partitioned
into 2 +M subsystem:

• robot position subsystem related to (px
k, p

y
k)

• robot orientation subsystem related to (φk, bk)
• M beacon position subsystems each one related to a

beacon position pi
k = (xi

k, y
i
k)

It is easy to recognise that partitioning in this way the
state, each subsystem has dynamic and observation equations
depending affinely with respect to its part of the state vector
(in Section VI, to experimentally compare performance, we
referred to this formulation as IEKF-1).

However, intensive numerical simulations have shown
that better performance are achieved considering a different
partitioning for the state vector. Specifically, considering a
subsystem devoted to estimation robot state xr, and M
subsystems each one devoted to estimate the position of any
single beacon (this algorithm will be referred as IEKF-2, in
order to distinguish it from that proposed in [6]).

B. Robot subsystem

As mentioned before, the robot dynamics is described by

xr
k = f
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)

+ ξr
k−1 (15)

where f is the unicycle equation (9) and ξr
k ∈ R4 is a zero-

mean white noise vector with covariance matrix Qr
k.

Because f is a nonlinear mapping, in order to apply IEKF
we need to linearise it, obtaining
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where φ̃k = φk/k−1 + (ωk − b̂k/k−1δtk)/2. This quantity
will be used, as in a classical EKF, in the estimation of the
covariance matrix during innovation process, i.e., equation
(3b), instead of A(i).

Moreover, we need to compute also the Jacobian of f()̇
with respect to u
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The observation vector is composed by M sub vectors
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Due to the nonlinearity of the mapping, we have to evaluate
the linearised version. However, for sake of brevity, we do
not report the results. These linearised quantities are used,
instead of matrix C(i), in equations (3c), (3d), and (3g).
Obviously, in the state innovation equation (3f), and in the
observation equation (3e), are implemented the associated
nonlinear expressions.

C. Beacon position subsystem

The state transition model of each beacon is

p
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where ξ(i)k ∈ R2 is a zero-mean white noise vector with
covariance matrix Q(i)

k



The associated output equations result in
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To simplify IEKF calculations, we pack, at each sampling
time, the M beacon filters associated with active beacons
into a single system. Specifically, at k-th sampling time, the
active beacons are retrieved and each sub vectors is used
to dynamically compose the state vector of such filter. For
example, if the beacons i and j are in the viewing windows
of the web cam, the active beacon subsystem become:
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V. COMPUTATIONAL COST

From a computational point of view, this formulation has
the same asymptotic behaviour of [6]. Specifically, it has a
memory occupancy ∼ O(N), where N is the number of
states used to represent all the discovered beacons and the
vehicle configuration. The computational load, on the other
way, linearly depends on the number of beacons simultane-
ously displayed inside camera image (i.e., M ).

Notice that a very interesting feature able to overcome
drawbacks of classical EKF based SLAM formulation is
represented by this computational reduction.

Indeed, it is well known that classical SLAM algorithms
have computational cost and memory requirement propor-
tional to O

(

N2
)

, being N the number of the states used to
represent all the beacons and the whole vehicle position.

Different solutions have been proposed in literature to re-
duce this load. In [4] authors propose CSLAM, an algorithm
that segments the map into a set of fixed disjointed areas and
solves the SLAM problem only with respect to the beacons
included inside one area (i.e., where the vehicle is). Full
update of the filter is performed only when the vehicle moves
away from the area. Further, to reduce memory occupation,
in [5] the same authors introduce a de-coupling procedure
in CSLAM that nullifies the correlation terms related with
beacons belonging to different constellations. In this way,
memory and computational requirements of the algorithm
become proportional to O (N ·Nb), where Nb is the number
of beacons inside each area.

However, because M � N (but also M < Nb), the
proposed formulation shows a reduced computation load.
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VI. EXPERIMENTAL RESULTS

Experimental trials have been carried out using a robo-
tised wheelchair prototype built at the robotics lab of the
University of “Roma Tre” and a Philips Vesta Pro Scan.
The vehicle has two driving wheels equipped with low
resolution incremental encoders (6.4 pulses/mm of the wheel
movement).

The proprioceptive sensory system is completed by a
piezoelectric gyro (MuRata), that measures rotation velocity.
The gyro has a good accuracy (3%) but is affected by
temperature depending bias.

The software implementation is based on two notebooks
connected over an Ethernet link. The first laptop installed on
the wheelchair runs the control software. A data acquisition
card (DAQPad 1200 by National Instruments) interfaces the
sensory and driving systems under a LabVIEW application
that includes some C routines for the time critical tasks of



the filter implementation. The second laptop, is devoted to
process images from the vision system including a web cam
mounted on the robot and focusing the ceiling. The distance
from the lights is about 2.50 m and each pixel is thereafter
about 5mm large at the CIF resolution (352 × 288).

During the experiment the robot was driven in order to
execute a double 8-path in an office-like environment. Using
this set up the camera is able to view only few beacons (zero
to three) for each frame.

The localisation results are shown in Fig. 3 where the
odometric path, as estimated on the basis of encoders and
gyro data, is compared with the filter output. The estimated
beacons positions are shown in the same Figure as red stars
and the distance from their exact position is reported in Fig.
4 (IEKF-2).

The data collected from the sensory system of the robot
was processed off-line using three different algorithm: an
approach based on classical Extended Kalman Filter (EKF),
the IEKF proposed in [6] (IEKF-1) and the IEKF explained
in Section IV (IEKF-2).
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Fig. 4. Landmark estimation errors

In Table I we show some statistical values that characterize
the quality of the three estimates.

TABLE I
MAP ERROR (CM)

Mean Standard Min Max Execution
value deviation error error Time

EKF 3.2 0.8 0.8 4.4 4.340
IEKF-1 5.5 1.14 3.8 7.2 2.604
IEKF-2 3.5 2.5 1.6 7.2 2.063

The proposed version IEKF-2 shows more accurate estima-

tion, very similar to that obtained via classical EKF but with
a considerable reduction in computational load (compare the
execution time of the different algorithms).

The best performance shown by the proposed formulation
of IEKF with respect to IEKF-1 might be explained consider-
ing that those formulation “neglects” correlation among robot
position and orientation ( taking into account it only via the
modified error covariance matrix Q̃). However, because these
quantities are strongly related each other, neglecting their cor-
relation represent a crude approximation. Best performances
are obtained, obviously, using full EKF with a computational
cost related to the update of the full state as already shown
in [1].

Finally, we remark that, using the same experimental test
bed, the execution time of the proposed filter is 60% less
than the algorithm reported in [7].

VII. CONCLUSIONS

This paper describes an algorithm based on a modified
version of EKF for SLAM problem. Specifically, the peculiar
structure of the problem at hand allows the use of the
interlaced version (IEKF) of EKF.

This algorithm represents a good trade-off between accu-
racy and computational load. In particular, it has been shown
that computational load and memory capacity request by
IEKF increase at least linearly with the number of beacons
(while classical approaches have a quadratic dependency) .
Further work are devoted to test IEKF in other configurations
(outdoor), with different testbeds and in the presence of more
mobile robots.
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