
Lezione 3
Introduzione alla programmazione con Python

Mauro Ceccanti‡ and Alberto Paoluzzi†

†Dip. Informatica e Automazione – Università “Roma Tre”
‡Dip. Medicina Clinica – Università “La Sapienza”

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Reference sources

Main references

� Campbell et al. [2009]

� Schuerer et al. [2008]

� Schuerer and Letondal [2008]

Useful readings

� Chapman [2003]

� van Rossum [2002]

� van Rossum [1997]

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Why Python ?

� It is free and well documented

� It runs everywhere

� It has a clean syntax

� It is relevant. Thousands of companies and academic
research groups use it every day;

� It is well supported by tools

What is Python? Executive Summary
Extracted from [van Rossum, 2002]

Python is an interpreted, object-oriented, high-level
programming language with dynamic semantics

� high-level data structures, with dynamic typing, make it
very attractive for Rapid Application Development

� simple, easy to learn syntax emphasizes readability

� supports modules and packages, which encourages
program modularity and code reuse

� available free for all major platforms

What is Python? increased productivity
Extracted from [van Rossum, 2002]

� Since there is no compilation step, the edit-test-debug cycle is
incredibly fast

� Debugging Python programs is easy: a bug or bad input will never
cause a segmentation fault

� Instead, when the interpreter discovers an error, it raises an exception

� When the program doesn’t catch the exception, the interpreter prints a
stack trace

� A source level debugger allows inspection of local and global variables,
evaluation of arbitrary expressions, setting breakpoints, stepping
through the code a line at a time, and so on

� The debugger is written in Python itself, testifying to Python’s
introspective power

� On the other hand, often the quickest way to debug a program is to add
a few print statements to the source: the fast edit-test-debug cycle
makes this simple approach very effective

Comparing Python to Other Languages
Extracted from [van Rossum, 1997]

� [Campbell et al., 2009]

� see Campbell et al. [2009]

Installing
on Mac OS X and Windows

� The suggested book [Campbell et al., 2009] on Python
programming is

Practical Programming:
An Introduction to Computer Science Using Python

� Basic install
(Python + NumPy + Wing IDE 101)

http://www.cdf.toronto.edu/∼csc108h/fall/python.shtml

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Numerical Python
NumPy is the fundamental package needed for scientific computing with Python

It contains:

� a powerful N-dimensional array object

� sophisticated broadcasting functions

� basic linear algebra functions

� basic Fourier transforms

� sophisticated random number capabilities

� tools for integrating Fortran code.

� tools for integrating C/C++ code.

NumPy can also be used as an efficient multi-dimensional container
of generic data. Arbitrary data-types can be defined.
This allows NumPy to seamlessly and speedily integrate with a wide
variety of databases.

Scientific Python
SciPy: Scientific Library for Python

� open-source software for mathematics, science, and
engineering

� It is also the name of a popular conference on scientific
programming with Python

� The SciPy library depends on NumPy

� The SciPy library provides many user-friendly and efficient
numerical routines

SciPy – Download
Scientific Library for Python

� Official source and binary releases of NumPy and SciPy

� A better alternative: SciPy Superpack for Python

� Biology packages

� Cookbook: this page hosts "recipes", or worked examples
of commonly-done tasks.

BioPython
Python tools for computational molecular biology

� Biopython is a set of freely available tools for biological
computation written in Python

� It is a distributed collaborative effort to develop Python
libraries and applications

� Biopython aims to address the needs of current and future
work in bioinformatics

Useful step-by-step instructions are in Biopython Installation

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Python comments

Comments are to clarify code and are not interpreted by Python

� Comments start with the hash character, #, and extend to
the end of the line

� A comment may appear at the start of a line or following
whitespace or code, but not within a string literal1

this is the first comment
SPAM = 1 # and this is the second comment

... and now a third!
STRING = "# This is not a comment."

1Literal ≡ according with the letter of the scriptures;
expression that returns itself by evaluation.

Using Python as a calculator
including comments

>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Variables and assignment

� 3.4. Declaring variables2

2from: "DIVE INTO PYTHON – Python from novice to pro",
http://www.diveintopython.org/index.html

Using Python as a Calculator
Numbers

� The interpreter acts as a simple calculator: you can type an
expression at it and it will write the value

� Expression syntax is straightforward: the operators +, -, * and /
work just like in most other languages

� parentheses can be used for grouping

Using Python as a Calculator
Numbers

� The equal sign (’=’) is used to assign a value to a variable

� Afterwards, no result is displayed before the next
interactive prompt:

Using Python as a Calculator
Numbers

� A value can be assigned to several variables
simultaneously:

Using Python as a Calculator
Numbers

� Variables must be “defined” (assigned a value) before they
can be used, or an error will occur:

Using Python as a Calculator
Numbers

� There is full support for floating point

� operators with mixed type operands convert the integer
operand to floating point

Using Python as a Calculator
Numbers

� Complex numbers are also supported

� imaginary numbers are written with a suffix of j or J

� Complex numbers with a nonzero real component are
written as (real+imagj), or can be created with the
complex(real, imag) function.

Using Python as a Calculator
Numbers

� Complex numbers are always represented as two floating
point numbers, the real and imaginary part

� To extract these parts from a complex number z, use z.real
and z.imag.

Using Python as a Calculator
Numbers

� The conversion functions to floating point and integer
(float(), int() and long()) don‚Ät work for complex numbers

� there is no one correct way to convert a complex number
to a real number

� Use abs(z) to get its magnitude (as a float) or z.real to get
its real part.

Using Python as a Calculator
Numbers

� In interactive mode, the last printed expression is assigned
to the variable _

� This means that when you are using Python as a desk
calculator, it is somewhat easier to continue calculations

� This variable should be treated as read-only by the user
� Don‚Ät explicitly assign a value to it
� you would create an independent local variable with the

same name masking the built-in variable with its magic
behavior.

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

Strings

� Besides numbers, Python can also manipulate strings,
which can be expressed in several ways

� They can be enclosed in single quotes or double quotes:

Strings

� String literals can span multiple lines in several ways

� Continuation lines can be used, with a backslash as the last
character on the line indicating that the next line is a logical
continuation of the line:

� newlines still need to be embedded in the string using \n

� the newline following the trailing backslash is discarded

� This example would print the following:

Strings

� strings can be surrounded in a pair of matching
triple-quotes: """ or ”’

� End of lines do not need to be escaped when using
triple-quotes, but they will be included in the string

� produces the following output:

Strings

� If we make the string literal a ‚Äraw‚Ä string, sequences
are not converted to newlines, but the backslash at the end
of the line, and the newline character in the source, are
both included in the string as data.

� Thus, the example:

� would print:

Strings

� Strings can be concatenated (glued together) with the +
operator, and repeated with *:

� Two string literals next to each other are automatically
concatenated

� the first line above could also have been written word =
’Help’ ’A’

� this only works with two literals, not with arbitrary string
expressions

Strings
Strings can be subscripted (indexed)

� the first character has index 0

� there is no separate character type

� a character is simply a string of size one

� substrings can be specified with the slice notation: two
indices separated by a colon.

Strings

� Slice indices have useful defaults

� an omitted first index defaults to zero

� an omitted second index defaults to the size of the string
being sliced.

Strings

� Unlike a C string

� Python strings cannot be changed

� Assigning to an indexed position in the string results in an
error:

Strings

� However, creating a new string with the combined content
is easy and efficient:

� Here‚Äs a useful invariant of slice operations: s[:i] + s[i:]
equals s.

Strings

� Degenerate slice indices are handled gracefully:

� an index that is too large is replaced by the string size

� an upper bound smaller than the lower bound returns an
empty string.

Strings

� Indices may be negative numbers, to start counting from
the right:

� But note that -0 is really the same as 0, so it does not
count from the right!

Strings

� think of the indices as pointing between characters

� with the left edge of the first character numbered 0

� Then the right edge of the last character of a string of n
characters has index n

� The slice from i to j consists of all characters between the
edges labeled i and j

Strings

� For non-negative indices, the length of a slice is the
difference of the indices

� if both are within bounds

� For example the length of word[1:3] is 2.

The built-in function len() returns the length of a string:

Sequence Types
str, unicode, list, tuple, buffer, xrange

strings String literals are written in single or double quotes:
’xyzzy’, "frobozz".

Unicode strings specified using a preceding ’u’ character: u’abc’,
u"def"

lists constructed with square brackets, separating items with
commas: [a, b, c]

tuples Tuples are constructed by the comma operator (not
within square brackets), with or without enclosing
parentheses, but an empty tuple must have the
enclosing parentheses, such as a, b, c or (). A single
item tuple must have a trailing comma, such as (d,).

buffers created by calling the builtin function buffer(). They
don‚Ät support concatenation or repetition

xrange objects. Created by calling the builtin function buffer().
They don‚Ät support concatenation or repetition

Sequence Types
str, unicode, list, tuple, buffer, xrange

For other containers see the built-in

dict class

set class

collections module.

Contents

Quick introduction to Python and Biopython
Python: a great language for science
BioPython, NumPython, SciPython, and more

Basic elements of programming
Expressions and types
Variables and assignment
Strings, escape chars and multiline strings
User input and formatted printing

User input and formatted printing

� http://docs.python.org/tutorial/inputoutput.html

User input and formatted printing
EXAMPLE

� file input/output

� bioinf/sw/viewer/wireframe.py

� bioinf/sw/viewer/backbone.py

� bioinf/sw/viewer/pdb.py

� bioinf/sw/viewer/basic.py

� bioinf/sw/viewer/3ETA.pdb

� bioinf/sw/viewer/2ACY.pdb

� bioinf/sw/viewer/1AQU.pdb

� bioinf/sw/viewer/FL06.py

Jennifer Campbell, Paul Gries, Jason Montojo, and Greg
Wilson. Practical Programming: An Introduction to Computer
Science Using Python. The Pragmatic Bookshelf, Raleigh,
North Carolina, USA, 2009.

Brad Chapman. Biopython and why you should love it.
http://www.biopython.org/DIST/docs/presentations/biopython.pdf,
2003.

Katja Schuerer and Catherine Letondal. python course in
bioinformatics. Technical report, Pasteur Institute, 2008.

Katja Schuerer, Corinne Maufrais, Catherine Letondal, Eric
Deveaud, and Marie-Agnes Petit. introduction to
programming using python,programming course for biologists
at the pasteur institute. Technical report, Pasteur Institute,
2008.

Guido van Rossum. Comparing Python to Other Languages.
http://www.python.org/doc/essays/comparisons/, 1997.

Guido van Rossum. What is Python? Executive Summary.
http://www.python.org/doc/essays/blurb/, 2002.

