computer systems overview

slides tratte e adattate da
W. Stalling — Operating Systems: Internals and
Design Principles

concetti fondamentali

architettura di un clacolatore

— architettura di un processore

— linguaggio macchina

— esecuzione di una istruzione
chiamate di procedura e ritorno
— uso dello stack

interrupts
gerarchie di memoria

Basic Elements

CPU
PC MAR
IR MBR
I/O AR
Exe\gu:ion
__unit__/ I/O BR

I/O Module

Buffers

Main Memory
. 0
System . 1
Bus 2
Instruction .
Instruction .
Instruction
Data
Data
Data
Data
. n-
n—-

PCO =0OProgram counter

IRO =Onstruction register

MARDO =O0Memory address register
MBRO =OMemory bulfer register

170 AREO Input/output address register
170 BREO Input/output buffer register

-

A\ A (Simplified) Large Pentium

not on

the book
SVSteI N da A.S. Tannenbaum
Cache bus Local bus Memory bus
Level 2 PCI l Main
cache <£> CRU <:___> bridge < > memory
ZAN PCI bus

Tr r I

Graphics
SeS JSB ISA N IDE adaptor | Available
f bridge disk PCI slot
<£> - + 1 e Mon_
itor
Mouse|| Key-
board ISA bus
¢ rd 1111 y
I I oo
Sound . ;
Modem Printer Available
card ISA slot

Instruction Execution

* Two steps

— Processor reads instructions from
memory

 Fetches
— Processor executes each instruction

Fetch Stage Execute Stage

START <

Fetch Next I Execute
Instruction Instruction HALT

Figure 1.2 Basic Instruction Cycle

Instruction Categories

Processor-memory

— Transfer data between processor and
memory

Processor-1/0

— Data transferred to or from a peripheral
device

Data processing

— Arithmetic or logic operation on data
Control

— Alter sequence of execution

Characteristics of a
vaothetical Machirge

Opcode Address

(a) Instruction format

Magnitude

(b) Integer format

Program Counter (PC) = Address of instruction
Instruction Register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(c¢) Internal CPU registers
0001 = Load AC from Memory
0010 = Store AC to Memory
0101 = Add to AC from Memory

(d) Partial list of opcodes

Figure 1.3 Characteristics of a Hypothetical Machine

Example of Program Execution

Memory CPU Registers Memory CPU Regjsters
30001 940 3 00|PC 30001 9 40 30 1|pPC
30159411 AC| 3015 9 4 0003AC
a2z 9 4 1 9 4 0|IR|302(2 9 4 1 94 0IR
L] L]
| |
00 00 3 24010 0 0 3
41|10 00 2 Q41|00 0 0 2
Step 1 Step 2
Memory CPU Registers Memory CPU Registers
3onfl 9 4 0 30 l|pC 00019 40 30 2/pC
015 94 1 000 3[AC|301)5 9 4 1] 0D 00SslAC
3&22941_\L+159411R 02|12 9 41 <5941
L] L]
| |
MO0 00 3 240i0 0 0 3 3}2:5
41|10 0 0 2 941|000 2
Step 3 Step 4
Memory CPU Registers Memory CPU Regjsters
001 940 30 z2pC 00[1 9 40 30 3/pC
3015 9 4 1 0 005AC|3015 9 41 0 00slAC
302|129 4 1—»29 4 1|IR|302(2 9 4 2 94 1|IR
L] L]
| |
00 00 3 24010 0 0 3
41|10 00 2 941|0 0 0O 5
Step 5 Step 6

Figure 1.4 Example of Program Execution
(contents of memory and registers in hexadecimal)

Addresses
4000

4100
4101

4500

4600
4601

4650
4651

4800

Procedure Calls

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

(a) Calls and returns

Main
Program

Procedure
Procl

Procedure
Proc2

y 74

(b) Execution sequence

Figure 1.26 Nested Procedures

Addresses
4000

4100
4101

4500

4600
4601

4650
4651

4800

Main Memory

CALL Procl

CALL Proc2

CALL Proc2

RETURN

RETURN

The Call Stack

Main
Program

Procedure
Procl

Procedure
Proc2

4601
4101 4101 4101

L L . L

(c) Initial (d) After
CALL Proc2 RETURN

(a) Initial stack (b) After
contents CALL Procl

4651
4101 4101

L - L

(e) After (D) After (g) After
CALL Proc2 RETURN RETURN

10

CPU Registers for the Stack

Stack
Limit

Stack
Pointer

Stack
Base

CPU Main
Registers Memory
A\
A\
Free
A\
In Use
(a) All of stack in memory

Block
Reserved
for Stack

Top
Stack
Element

Second
Stack
Element

Stack
Limit

Stack
Pointer

Stack
Base

(b) Two top elements in registers

CPU Main
Registers Memory
/ Free
f
- In Use
-

Figure 1.25 Typical Stack Organization

Block
Reserved
for Stack

11

Programmed |/O [ligmu
processor drives 1/O hw
modules to perform 1/O

Sets appropriate bits in the |/O
hw module status register

Processor recursively checks
status until operation is Module
complete
13 g 9 f‘"‘r’“‘* word CPU — memory
also known as “busy waiting inko momeory

simple but inefficient

used only for very very fast |/O
devices Next insiruction

_ eg graphlc (a) Programmed 1/O

12

Interrupts

* most I/O devices are much slower than
the processor
— processor must pause would wait for device
— better doing something else and being

interrupted

* Interrupts are asynchronous precedure

calls

* Interrupts are, usually, started by events
that are

— not related to the program that is currently
executed by the processor

— related to the program but not foreseen by
the programmer

13

Classes of Interrupts

Table 1.1 Classes of Interrupts

=
=

Program Generated by some condition that occurs as a result of an instruction
execution, such as arithmetic overflow, division by zero, attempt to execute
an illegal machine instruction, and reference outside a user's allowed
mMemory space.

Timer Generated by a timer within the processor. This allows the operating system
to perform certain functions on a regular basis.

Lo Generated by an I/O controller, to signal normal completion of an operation
or to signal a variety of error conditions.

Hardware failure Generated by a failure, such as power failure or memory parity error.

14

Interrupt Handler

 the interrupt handler is the procedure
called when an interrupt occours

o after that the processor execution flow
and state are restored

User Program Interrupt Handler

'

Interrupt ——»
occurs here i+ 1

M

Figure 1.6 Transfer of Control via Interrupts

15

Interrupt Handler

» generally part of the operating system

e it knows or discovers the reason for the
interrupt

* It handle the situation that caused the
interrupt

16

Interrupt Cycle

* interrupts never interrupt the execution of a
machine instruction

— i.e., checks for pending interrupts is performed
by the processor after each machine instruction

Fetch Stage Execute Stage Interrupt Stage

Interrupts
Disabled

HALT

Figure 1.7 Instruction Cycle with Interrupts

17

0 0
T T
¥ N+ 1
Control Control
addresses Stack },_ | stack }—

T+M J T+M
grOW [N+1] il
Program Program
Counter Counter

Start Start
d Interrupt General d Interrupt General
Service Registers Service Registers
Y + L [Remmn Routine - ¥ + L [Reom Routine
M=size of registers Stack W stack
Pointer Pointer
n Processor Processor
Changes in
N | N
emory o e
and vain vain
Memory Memory

(a) Interrupt occurs after instruction
at location N

Registers
for an
Interrupt

(b) Return from interrupt

Figure 1.11 Changes in Memory and Registers for an Interrupt

Simple

Interrupt
Processing

Hardware

—A A

Device controller or
other system hardware

issues an interrupt

Processor finishes
execution of current
instruction

Processor signals
acknowledgment
of interrupt

Processor pushes PSW
and PC onto control
stack

Processor loads new
PC value based on

interrupt

Software

—A A

Save remainder of
process state
information

Process interrupt

Restore process state
information

Restore old PSW
and PC

Figure 1.10 Simple Interrupt Processing

19

Multiple Interrupts

- what if an interrupt is generated during the
execution of the interrupt handler?

 one solution: disable interrupts during interrupt
handler execution

— the pending interrupts will be executed after
the current one is served

Interrupt
User Program Handler X

20

(a) Sequential interrupt processing

nested interrupt processing

 define priorities for interrupts

* a high priority interrupt can interrupt an interrupt
handler that is serving an interrupt at a lower
priority

Interrupt
User Program Handler X

¥ _

5

= | L=
E Interrupt
E andler Y

{b) Nested interrupt processing

IIIIIIIIIIIIIIIl|r

21

Issue Read PU — 1/O

Interrupt-Driven pf o [o ame

I/O module "~ Pelse
/0O .
o of /O
* Processor is interrupted when iSO — CEU
I/O module ready to exchange
Check Error
data status condition
* No needless waiting Ready
° Read word
Processor saves context of romt0 o ceu
program executing and begins Module
executing interrupt-handler
Write word CPU — memary
into memory

Mext instruction
(b} Interrupt-driven /O

/O With and Without

1]
: [y
E i
@ : A
: At
Pt
N " &
o v §od
o, -' E
- r ey & &
H L i
: !'-..]
: i -“l=
; ; T
H L .i-‘I
: ¥
@ {7
¥ i K
P F S
.
¥
Y
oo
F.r'
WRITE
1 ¥

Interrupts

FmEam

F'IDEEIII . , Program

: g o
o i A0

P
N R e [0
WRITE Ly "Curﬂmaﬂd
— i
@ I."Ij.'

f ih e, ELTL
® : " ; v, EE
—— ¥ Wi
ZEC

A R T

P '*.f END

P 5
@ _."

() No interrupts

(b) Interrupts; short 10 wait

23

Timing Diagram Based on

a* ;
s F
1 I
T s
WRITE o 4
b -"i‘ :
.t
?-"«‘
] [
i 8
; S
e i/
L
P
i
;s
.
L xs
F e
WRITE
1 ¥

() Nointerrupts

Short I/0O Walit

Time

oo

Processor [8]
wait operation

® @ |e

Processor Vo
wait operation

© @

(a} Without interrupts
(circled numbers refer
to numbers in Figure 1.5a)

ro
operation

o
operation

oleje|e|e|oje|e|e)

(b} With interrmpts
{circled numbers refer
to numbers in Figure 1 .5b}

aghe,
S
H{-
R
sessssnnsnd

B #
: g
] [1
s i@
: AP E 8
: LA B
R e T
C woferf Command
WRITE .= ;
: s
— FF
" L]]
- L] *
; i
£ if
PFd
i Py
k :‘Ih'h."l.-'l:I
.]
Ff i
i A e Interrupt
I
i, g T, Hander

H - H

. o ;o

H o - "“:

£ ; o END
P

P

' -

¥

(b) Interrupts; short A0 wait

24

long |I/O wait and Interrupts

User Ly

Program Program
3 i
-}-"* :
= »
© A1 @
T I B G
: o~ .-_f{m---"c o .
e QITITAN
WRITE ...ee" ; lf
—— L "
ff
i .
F§
i
@ P i
[
L]
¥
hd
¥
: i § Interrupt
H Ll
HE] g T
S T 7
v 5 F1 1 |®
-n.f."'“i-. § 3
T 2 T e
£ END
s
L
-
g
® 17/
.1' #
i
LI
¥,
Ed
Fi
WRITE ®

(c) Interrupts; long O wait

*the most efficient and
general approach

*it needs I/O queues
(buffers)

*however, an interrupt for
each transferred word si
very inefficient

*cpu would be very
busy in serving
interrupts for doing
/O

25

Direct Memory Access

/O to/from memory is
performed by a special

_ e e PU — DMA
purpose chip (DMA o commanal] Do something
controller) DuOmods §”" Felse
Moderated CPU slowdown Read satus g - - - Interrupt

. f DMA
— setup time module |IDMA — CPU
— shared bus

Next instruction

An interrupt is sent when the
transfer is complete

Processor continues with
other work

(c) Direct memory access

26

Memory Hierarchy

Figure 1.14 The Memory Hierarchy

 Faster access time,
greater cost per bit

» Greater capacity
— smaller cost per bit

— slower access speed

« Based on Locality
— temporal
— spatial

27

Disk Cache

* A portion of main memory used as a

buffer to temporarily to hold data for
the disk

 Disk writes are clustered

* Some data written out may be
referenced again. The data are
retrieved rapidly from the software
cache instead of slowly from disk

28

	Slide 1
	Slide 2
	Top-Level Components
	Slide 4
	Instruction Execution
	Slide 6
	Characteristics of a Hypothetical Machine
	Example of Program Execution
	Slide 9
	Slide 10
	Slide 11
	Programmed I/O
	Slide 13
	Classes of Interrupts
	Interrupt Handler
	Slide 16
	Interrupt Cycle
	Changes in Memory and Registers for an Interrupt
	Simple Interrupt Processing
	Multiple Interrupts
	Slide 21
	Interrupt-Driven I/O
	Program Flow of Control Without Interrupts
	Timing Diagram Based on Short I/O Wait
	Slide 25
	Direct Memory Access
	Slide 27
	Disk Cache

