
1

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

processes

2

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process

• a program in execution (running) on a
computer

• characterized by...
– at least one execution thread

– an associated set of system resources

– a current state of CPU (and possibly other
resources)

3

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i threads

• the entity that can be assigned to, and
executed on, a processor
– it is meaningful only within a process

– described by
• the value of the program counter

• the value of the CPU regisers

• in modern operating systems a process may
contains one or more thread

• we assume it contains one thread
– unless otherwise specified

not on
the book

4

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i summary

• OS – process interaction
– the point of view of the process

– the point of view of the OS

• system calls

• process lifecycle

• state diagrams for processes

• representation within OS

5

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i the point of view of the process

• it explicitly interacts with OS by means of
system calls (syscalls)

• like procedure calls but...
– syscall are made available by OS

– can perform privileged operations

• syscalls are not called using regular “call”
instructions
– special instruction

– software interrupt

6

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i OS and processes interaction

Kernel

P
ro

ce
ss

 1

P
ro

ce
ss

 2

P
ro

ce
ss

 n

executes in
user mode

executes in
kernel mode

system
call

.....

7

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i classes of syscalls

• I/O

– read and write (need a communication channel)

• resources allocation/deallocation

– communication channels (with i/o devices or other processes)

– memory

– etc.

• processes control

– create, kill, wait for..., stop, continue, debug, etc.

• resource management (i.e. miscellanea)

– change attributes (for files, devices, comm. channels, etc.)

– set system values (sys. clock, routing table, ecc.)

not on
the book

8

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i the point of view of the OS

• when a syscall is executed, OS can...
– … immediately doing what it is asked for

and returning to process execution

– … postpone the request and
blocking the process until the request can be
fulfilled
• e.g. a read syscall may require a disk operation, so

read cannot be immediately fulfilled

9

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i the point of view of the OS

• often more processes can be executed
– but cpu is only one (or are limited in number)

• OS can interleave the execution of multiple
processes

• OS can choose which one to run
– maximize processor utilization

– providing reasonable response time

• decisions are taken by the “short time cpu
scheduler”

10

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i a model of process lifecycle

• creation
– why and how a process is created?

• execution
– regular “unprivileged” computation

– syscalls (possibly blocking)

• termination
– regular (it asks the OS to terminate)

– error (illegal instruction, div. by zero, ecc.)

11

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Creation

12

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process creation

• but...

• in modern operating systems all causes are
implemented by

process spawning

• but for the first process!
– it is created at boot time and never dies

(usually)

13

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i processes tree

• every process has a parent
– the one that asked for its creation

• but for the first process
– which is the root of the tree

14

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Termination

15

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Termination

16

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process termination

• normal completion is asked by a process by
calling a specific syscall

• other form of termination when something
wrong is detected...
– during the execution of a syscall
• of the process (e.g. memory unavailable)

• of other processes (e.g. regular termination of A
implies killing child B)

– during handling of an interrupt
• e.g. div. by zero, illegal instruction, illegal memory

access, etc.

17

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i scheduling and dispatching

• scheduling
– deciding which is the next process executed by

the CPU

• dispatching
– setting up CPU registers to execute the process
• i.e. restore the context for the process

18

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i scheduler vs. dispatcher

• scheduling and dispatching are usually
performed together by the same routine

• we use “scheduler” or “dispatcher”
depending on the aspect we need to
emphasize

19

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i dispatching example

• what instructions are executed by the cpu?

20

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Processes
and

Memory

21

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Trace of Process
• Sequence of instruction (addresses) for each

process

22

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

• The dispatcher
switches the
processor from
one process to
another
(process
switch)

Dispatcher

23

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Two-State Process Model

24

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Five-State Process Model

25

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process States

26

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

One sequential I/O device

27

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Many sequential I/O devices

28

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Suspended Processes

• Processor is faster than I/O so many
processes could be waiting for I/O

• Swap these processes to disk to free up
memory

• Blocked state becomes suspend state
when swapped to disk

• Two new states
– Blocked/Suspend
– Ready/Suspend

29

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Two New States

30

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Several Reasons for
Process Suspension

31

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

process description

32

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Image

33

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

OS controls assignment of
resources to processes

34

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Control Block (PCB)
• contains data about one

process
– one instance for each process

• contains all the information we
need to...
– ...interrupt a running process
– ...resume execution

• created and managed by the
operating system

• allows support for multiple
processes

35

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Process Elements in PCB
 they largely depend on the OS

• Process Identifier (PID)
• State (ready, blocked, etc.)

– if blocked, events the process is waiting for
• Priority (for the scheduler)
• saved CPU registers and PC (a.k.a. context)
• Memory pointers (program, data, stack, tables, etc.)
• I/O status information (open files, outstanding I/O

requests, inter-processes comunication, etc)
• Accounting information (CPU time used, limits, etc.)
• user that owns the process, and/or privileges
• process that created the process

36

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Data Structuring
• PCB – PCB pointers
– parent-child (creator-created) relationship with

another process

• queues
– all processes in a waiting state for a particular

priority level may be linked in a queue.

37

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Creation

• Assign a unique process identifier

• Allocate space for the process

• Initialize process control block

• Set up appropriate linkages
– e.g. add new process to linked list used for

scheduling queue

• Create or expand other data structures
– e.g. maintain an accounting file

38

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i PCB synonyms

• process descriptor

• task control block

• task descriptor

linux

• task_struct

39

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i PCB related data structures

• process table

• memory tables

• I/O tables

• file tables

40

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Process Table

• one entry for each process

• contains a minimal amount of information
needed to activate the process
– usually a “pointer” to the PCB

– it may be a complex data structure (tree, hash
table, ecc.)

41

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Memory Tables

• Allocation of main memory to processes

• Allocation of secondary memory to
processes

• Protection attributes for access to shared
memory regions

• Information needed to manage virtual
memory

42

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i I/O Tables

• I/O device is available or assigned

• Status of I/O operation

• Location in main memory being used as
the source or destination of the I/O transfer

43

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i File Tables

• Existence of files

• Location on secondary memory

• Current Status

• Attributes

• Sometimes this information is maintained
by a file management system

44

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

process control

45

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i mode switch
• two cases
– user-mode → kernel-mode
• triggered by an interrupt or a system call

• set cpu in priviledged mode

• may save the cpu state

– kernel-mode → user-mode
• triggered by the kernel when it “decides” to

resume process execution

• set cpu in unpriviledged mode

• may restore all or part of the cpu state

46

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process switch (dispatching)
• a process switch assigns the cpu to a

different process

– before: P
1
 running, P

2
 ready

– after: P
1
 not running, P

2
 running

• it is performed in kernel-mode
– it requires two mode switches

1 user-mode → kernel-mode before the process switch
– triggered by interrupt, trap or system call

– kernel possibly fulfill a request (e.g. I/O)

2 kernel-mode → user-mode after the process switch
– into the process chosen by the kernel (scheduler)

47

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process switch

• it modifies OS data structures

– set proper state in PCB of P
1
 and P

2

– update queues

• move P
1
 into the appropriate queue

• move P
2
 out of the ready queue

– update CPU memory tables for the image of P
2

• the next mode switch (kernel-mode → user-
mode) will restore the cpu state of P

2

48

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

typical situations for
switching mode and/or process
• clock interrupt
– process has executed for the maximum

allowable time slice

– always switch process

• system call
– process switch when it is a blocking I/O request

– OS may check if other processes have greater
priority and possibly switch process

49

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

typical situations for
switching mode and maybe process
• I/O interrupt
– a blocked process may become ready

– process switch depends on OS policies and
priorities

• other interrupts (a.k.a traps)
– memory page fault (virtual memory)
• current process becomes blocked (waiting for the

page) and process is switched

– error or exception
• current process usually die and process is switched

50

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i execution of the OS

• the OS is executed by the cpu

• is the OS a process?
– that is, when the OS is executed, the memory

layout seen by the processor is that of a
process?

• several architectures are possible
– non-process kernel

– kernel execution within user processes

– process-based operating system

51

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i non-process kernel
• kernel is executed outside of any process
– kernel has its own “memory space”
• there is not a OS process anyway!

• inefficient (memory tables reconfiguration for each
mode switch)

– kernel implements tricks to access the images
of processes

– obsolete

52

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Execution Within User
Processes

• the kernel appears in the memory layout of
each process
– shared pages

• no reconfiguration of CPU memory table is
needed (efficient)
– kernel execution need only a mode switch

– waste of virtual address space for the kernel is
negligible

53

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Execution Within
User Processes

• each process has its
own image

• image contains also
– kernel stack

– kernel program

– kernel data

• kernel program and data
are shared by all images
– kernel mode is needed to

read and write them

54

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Execution Within User
Processes

• to fulfill a system call or interrupt...
– mode is switched

– process is not switched

– current memory image remain the same

– both kernel data and current process data can
be accessed

• a process switch occurs if and only if a new
process is scheduled and dispatched
– process switch is the only activity that can be

considered outside of any process

55

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

process-based OS (microkernel)
• as “execution in user process” but kernel

functionalities are minimal
– thread/process scheduling and dispatching

– Inter Process Communication (IPC)

– direct access from os-processes to hardware

• Implement many os functionalities as a
system process
– system call are actually IPC messages

– process switch and inter-process
communication are the only activities that are
outside of any process

56

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

process-based OS: design choices
• may processes run in kernel mode to

access hardware?

• drivers are implemented in the kernel or as
processes?

• consider the efficiency of the alternatives of
an I/O operation
– how many inter-processes messages?

– how many mode switches?

– how many process switches?

– how many times dispatcher run?

57

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i process-based OS (microkernel)

• modular and robust

• flexible
– services may be added, removed or distributed

• usually less efficient than “kernel execution
within user process”

• Windows adopts this approach
– in the sense that many functionalities are

implemented as processes

58

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i real life OS

• unix BSD – monolithic “exec within user
proc.”

• linux - hybrid approach
– system is “executed within user process”

– some OS tasks are demanded to special
processes (kernel threads)

– modular, efficient, not reliable as microkernel

• microkernels
– mach, chorus, L4

59

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
,

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i real life OS: windows

• MS started with
microkernel in mind

• not real a
microkernel since
NT4
– kernel contains

graphic code

	Process Description and Control
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Requirements of an Operating System
	Slide 10
	Process Creation
	Slide 12
	Slide 13
	Process Termination
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Example Execution
	Trace of Process
	Slide 22
	Two-State Process Model
	Five-State Process Model
	Process States
	Using Two Queues
	Multiple Blocked Queues
	Suspended Processes
	Two Suspend States
	Reasons for Process Suspension
	Slide 31
	Process Image
	Processes and Resources
	Process Control Block
	Process Elements
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Process Table
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	mode switch
	When to Switch a Process
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Execution of the Operating System
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

