Processes

process

* a program in execution (running) on a
computer

» characterized by...
— at least one execution thread
— an associated set of system resources

— a current state of CPU (and possibly other
resources)

JAN

not on

threads

 the entity that can be assigned to, and
executed on, a processor

— it iIs meaningful only within a process
— described by

* the value of the program counter
* the value of the CPU regisers

* In modern operating systems a process may
contains one or more thread

e we assume it contains one thread
— unless otherwise specified

summary

OS — process interaction
— the point of view of the process
— the point of view of the OS

system calls

process lifecycle

state diagrams for processes
representation within OS

the point of view of the process

* it explicitly interacts with OS by means of
system calls (syscalls)

* |like procedure calls but...
— syscall are made available by OS
— can perform privileged operations
 syscalls are not called using regular “call”
Instructions

— special instruction
— software interrupt

OS and processes interaction

executes in 7 ? 0
user mode S 0 @
S 2 HE R EEN o
al 0 X
H h H g system g H)
4} 4 L call 4 L
executes in o I
kernel mode Kernel

JAN

not on

classes of syscalls

« |/O
— read and write (need a communication channel)
 resources allocation/deallocation
— communication channels (with i/o devices or other processes)
— memory
— etc.
* processes control
— create, kill, wait for..., stop, continue, debug, etc.
* resource management (i.e. miscellanea)
— change attributes (for files, devices, comm. channels, etc.)
— set system values (sys. clock, routing table, ecc.)

the point of view of the OS

» when a syscall is executed, OS can...

— ... immediately doing what it is asked for
and returning to process execution

— ... postpone the request and
blocking the process until the request can be
fulfilled

 e.g. a read syscall may require a disk operation, so
read cannot be immediately fulfilled

the point of view of the OS

often more processes can be executed
— but cpu is only one (or are limited in number)

OS can interleave the execution of multiple
processes

OS can choose which one to run

— maximize processor utilization

— providing reasonable response time

decisions are taken by the “short time cpu
scheduler”

a model of process lifecycle

 creation
— why and how a process is created?
* execution
— regular “unprivileged” computation
— syscalls (possibly blocking)
» termination

— regular (it asks the OS to terminate)
— error (illegal instruction, div. by zero, ecc.)

10

Process Creation

Table 3.1 Reasons for Process Creation

New batch job

Interactive logon

Created by OS to provide a service

Spawned by existing process

The operating system is provided with a batch job control
stream_ usually on tape or disk. When the operating svstem
is prepared to take on new work, it will read the next
sequence of job control commands.

A user at a terminal logs on to the system.

The operating system can create a process to perform a
function on behalf of a user program_ without the user

having to wait (e.g.. a process to control printing).

For purposes of modularity or to exploit parallelism, a user
program can dictate the creation of a number of processes.

11

process creation

e but...

* In modern operating systems all causes are
Implemented by

process spawning

 pbut for the first process!

— 1t I1s created at boot time and never dies
(usually)

12

processes tree

» every process has a parent
— the one that asked for its creation

 pbut for the first process
— which is the root of the tree

13

Process Termination

Normal completion

Time limit exceeded

Memory unavailable

Bounds violation

Protection error

Arithmetic error

The process executes an OS5 service call to indicate that it has
completed running.

The process has run longer than the specified total time limit.
There are a number of possibilities for the tvpe of time that is
measured. These include total elapsed time ("wall clock time"),
amount of time spent executing, and. in the case of an interactive
process, the amount of time since the user last provided any input.

The process requires more memory than the system can provide.

The process tries to access a memory location that it is not allowed
to access.

The process attempts to use a resource such as a file that it is not
allowed to use, or it tries to use it in an improper fashion, such as
writing to a read-only file.

The process tries a prohibited computation, such as division by
zero, of tries to store numbers larger than the hardware can
accommodate.

14

Process Termination

Time overrun

'O failure

Invalid instruction

Privileged instruction

Data misuse

Operator or OS intervention

Parent termination

Parent request

The process has waited longer than a specified maximum for a
certain event to occur.

An error occurs during input or output, such as inability to find a
file, failure to read or write after a specified maximum number of
tries (when, for example, a defective area is encountered on a

tape), or invalid operation (such as reading from the line printer).

The process attempts to execute a nonexistent instruction (often a
result of branching into a data area and attempting to execute the

data).

The process attempts to use an instruction reserved for the
operating svstem.

A piece of data is of the wrong tvpe or is not initialized.

For some reason, the operator or the operating system has
terminated the process (for example, if a deadlock exists).

When a parent terminates, the operating system may automatically
terminate all of the offspring of that parent.

A parent process typically has the authonty to terminate any of its offspring.

15

process termination

* normal completion is asked by a process by
calling a specific syscall

 other form of termination when something
wrong Is detected...
— during the execution of a syscall

« of the process (e.g. memory unavailable)
 of other processes (e.g. regular termination of A
implies killing child B)
— during handling of an interrupt

 e.g. div. by zero, illegal instruction, illegal memory
access, etc.

16

scheduling and dispatching

» scheduling

— deciding which is the next process executed by
the CPU

* dispatching

— setting up CPU registers to execute the process
* i.e. restore the context for the process

17

scheduler vs. dispatcher

» scheduling and dispatching are usually
performed together by the same routine

« we use “scheduler” or “dispatcher”
depending on the aspect we need to
emphasize

18

dispatching example

« what instructions are executed by the cpu?

19

P r O C e S S e S ”‘“d"ﬂ“ Main Memory Program ;Tnier

100

a n d Dispatcher
Memory =

Process A

8000

Process B

12000

Process C

Trace of Process

« Sequence of instruction (addresses) for each

Process

5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011

(a) Trace of Process A

&000
&001
&002
8003

(b) Trace of Process B

12000
12001
12002
12003
12004
12005
12006
12007
12008
12009
12010
12011

(c) Trace of Process C

5000 = Starting address of program of Process A
8000 = Starting address of program of Process B
12000 = Starting address of program of Process C

21

Dispatcher

« The dispatcher
switches the
processor from
one process to
another
(process
switch)

Oy L e L b =

Time out

--------------- 1/0 request

17
18
19
20
21
22
23
24
23
26

100 = Starting address of dispatcher program

100
101
102
103
104
105
12000
12001
12002
12003

27 12004
28 12005
20 100
0 10
31 102
32 103
33 104
34 105
33 5006
36 5007
37 5008
38 5009
39 5010
40 3011
41 100
42101
43 102
44 103
45 104
46 105
47 12006
48 12007
40 12008
50 12009
51 12010
52 12011

shaded areas indicate exscution of dispatcher process;

first and third columns count instruction cycles:

second and fourth columns show address of instruction being executed

Time out

Time out

Two-State Process Model

Dispatch

P Y

Enter it Mol Exit

Running Running -

‘\//

Pause

(a) State transition diagram

Queune
Enter] Dispatch Exit

i - Processor -
A |

Pause

(b) Queuning diagram

23

New

Five-State Process Model

TR Dispatch ‘
Admit —_— - _ Release
‘ ‘ :

Figure 3.6 Five-State Process Model

Exit

24

Process States

[-
L N L L e L G e e L e e]
.i“i‘i“1."“i“i‘i‘1“"‘i“i‘i“1“"‘i“i“i“1“"‘i“i‘i“1“"‘l“i‘i“1“".i“i‘i“1“"‘i“i‘i“1“"‘i“i‘i“1“"‘i“i“i“1‘1‘"““‘1‘1‘"““‘1‘1‘

Process B ;
S e e S S S S S S S S

Process C

Dispatcher

Figure 3.7 Process States for Trace of Figure 3.4

25

One sequential I/O device

Ready Queue - Release

Admit

Dispatch

Timeout

Blocked Queue

Event Wait

Event o
Occurs
: Dispatch
Admit —_— 4 Release _
New E— Ready Running e Exit
‘ Timeout

Event
Oceurs

Blocked
' 26

Many sequential 1/O devices

Ready Queue Release
Admit Dispatch
- Processor
1 f—
Timeout
-l
Event 1 Queue Event 1 Wait
Event 1 ven al
Oceurs -
Event 2 Queue o
Event 2 , . Event 2 Wait
Occurs
¥
¥
¥
Event # Queue
Event u - Event n Wait
Oceurs

(b) Multiple blocked queues

Suspended Processes

Processor is faster than I/O so many
processes could be waiting for /O

Swap these processes to disk to free up
memory

Blocked state becomes suspend state
when swapped to disk

Two new states

— Blocked/Suspend

— Ready/Suspend

28

Two New States

‘\Tﬁ"
: s
L .
W el
- = %
M Activate i Dispatch ™~ _
Ready/ - - : Release A
Suspend - Ready Running = Fxil
A Suspend Timeout
s HE
z = z
ol = —
Activate £
Blocked/
Suspend - Blocked
Suspend

(b) With Two Suspend States -

Several Reasons for
Process Suspension

Swapping The operating system needs to release sufficient main
memory to bring in a process that is ready to execute.

Other OS reason The operating system may suspend a background or utility
process or a process that is suspected of causing a problem.

Interactive user request A user mav wish to suspend execution of a program for
purposes of debugging or in connection with the use of a
resource.

Timing A process may be executed periodically (e.g__ an

accounting or system monitoring process) and mav be
suspended while waiting for the next time interval

Parent process request A parent process may wish to suspend execution of a
descendent to examine or modify the suspended process, or
to coordinate the activity of various descendents.

process description

31

Process Image

Table 3.4 Typical Elements of a Process Image

User Data
The modifiable part of the user space. May include program data, a user stack area, and
programs that mav be modified.

User Program
The program to be executed.

Svstem Stack
Each process has one or more last-in-first-out (LIFQ) system stacks associated with it. A
stack is used to store parameters and calling addresses for procedure and system calls.

Process Control Block
Data needed by the operating system to control the process (see Table 3.5).

32

OS controls assignment of
resources to processes

33

Process Control Block (PCB)

contains data about one

Process
— one instance for each process

contains all the information we

need to...

— ...Interrupt a running process
— ...resume execution

created and managed by the
operating system

allows support for multiple
processes

Identifier

State

Priority

Program counter

Memory pointers

Context data

1/0 status
information

Accounting

information

34

Process Elements in PCB
they largely depend on the OS

Process Identifier (PID)
State (ready, blocked, etc.)

— if blocked, events the process is waiting for
Priority (for the scheduler)

saved CPU regqisters and PC (a.k.a. context)
Memory pointers (program, data, stack, tables, etc.)

/O status information (open files, outstanding /O
requests, inter-processes comunication, etc)

Accounting information (CPU time used, limits, etc.)
user that owns the process, and/or privileges
process that created the process

35

Data Structuring

« PCB — PCB pointers

— parent-child (creator-created) relationship with
another process

e queues

— all processes in a waiting state for a particular
priority level may be linked in a queue.

36

Process Creation

Assign a unique process identifier
Allocate space for the process
Initialize process control block

Set up appropriate linkages

— e.g. add new process to linked list used for
scheduling queue

Create or expand other data structures
— e.g. maintain an accounting file

37

PCB synonyms

* process descriptor
 task control block
 task descriptor

linux
» task struct

38

PCB related data structures

process table
memory tables

/O tables
file tables

39

Process Table

* one entry for each process

« contains a minimal amount of information
needed to activate the process

— usually a “pointer” to the PCB

— it may be a complex data structure (tree, hash
table, ecc.)

40

Memory Tables

Allocation of main memory to processes

Allocation of secondary memory to
processes

Protection attributes for access to shared
memory regions

Information needed to manage virtual
memory

41

/O Tables

* |/O device is available or assigned

« Status of |/O operation

» Location in main memory being used as
the source or destination of the I/O transfer

42

File Tables

Existence of files

Location on secondary memory
Current Status

Attributes

Sometimes this information is maintained
by a file management system

43

process control

44

mode switch
e two cases

— user-mode — kernel-mode
* triggered by an interrupt or a system call
* set cpu In priviledged mode
* may save the cpu state

— kernel-mode — user-mode

* triggered by the kernel when it “decides” to
resume process execution

 set cpu in unpriviledged mode
* may restore all or part of the cpu state

45

process switch (dispatching)

* a process switch assigns the cpu to a
different process

— before: P_ running, P, ready

_ after: P. not running, P_ running

* it is performed in kernel-mode

— it requires two mode switches

1 user-mode — kernel-mode before the process switch
— triggered by interrupt, trap or system call
— kernel possibly fulfill a request (e.g. I/O)

2 kernel-mode — user-mode after the process switch
— into the process chosen by the kernel (scheduler)

46

process switch

* it modifies OS data structures
— set proper state in PCB of P, and P,

— update queues
- move P into the appropriate queue

. Move P2 out of the ready queue

— update CPU memory tables for the image of P,

 the next mode switch (kernel-mode — user-
mode) will restore the cpu state of P,

47

typical situations for
switching mode and/or process

 clock interrupt

— process has executed for the maximum
allowable time slice

— always switch process

» system call
— process switch when it is a blocking 1/O request

— OS may check if other processes have greater
priority and possibly switch process

48

typical situations for
switching mode and maybe process

 |/O interrupt
— a blocked process may become ready
— process switch depends on OS policies and
priorities
 other interrupts (a.k.a traps)

— memory page fault (virtual memory)

« current process becomes blocked (waiting for the
page) and process is switched

— error or exception

« current process usually die and process is switched
49

execution of the OS

» the OS is executed by the cpu

* |s the OS a process?

— that is, when the OS is executed, the memory
layout seen by the processor is that of a
process?

» several architectures are possible
— non-process kernel
— kernel execution within user processes
— process-based operating system

50

non-process kernel

» kernel is executed outside of any process

— kernel has its own “memory space”
* there is not a OS process anyway!

* inefficient (memory tables reconfiguration for each
mode switch)

— kernel implements tricks to access the images
of processes

— obsolete

51

Execution Within User

Processes

» the kernel appears in the memory layout of
each process

— shared pages

* no reconfiguration of CPU memory table is
needed (efficient)

— kernel execution need only a mode switch

— waste of virtual address space for the kernel is
negligible

52

Execution Within =
Processor S Process Control
User Processes e -
Process Control
» each process has its {nformation
own image User Stack
* Image contains also
— kernel stack Address Space
{Programs, Data)
— kernel program
— kernel data
Kernel Stack
» kernel program and data

are shared by all images

— kernel mode is needed to
read and write them = ‘oo

Shared Address
Space

L R N N N N N N N _§]
L-'-'-'-'-'-'-'-'-'-

Execution Within User
Processes

» to fulfill a system call or interrupt...
— mode is switched
— process Is not switched
— current memory image remain the same

— both kernel data and current process data can
be accessed

* a process switch occurs if and only if a new
process Is scheduled and dispatched

— process switch is the only activity that can be
considered outside of any process

54

process-based OS (microkernel)

* as “execution in user process” but kernel
functionalities are minimal
— thread/process scheduling and dispatching
— Inter Process Communication (IPC)
— direct access from os-processes to hardware

* Implement many os functionalities as a
system process
— system call are actually IPC messages

— process switch and inter-process
communication are the only activities that are
outside of any process

55

process-based OS: design choices

* may processes run in kernel mode to
access hardware?

 drivers are implemented in the kernel or as
processes?

» consider the efficiency of the alternatives of
an |/O operation

NOW many inter-processes messages?
now many mode switches?
Now many process switches?

now many times dispatcher run? 56

process-based OS (microkernel)

« modular and robust

* flexible
— services may be added, removed or distributed

 usually less efficient than “kernel execution
within user process”

* Windows adopts this approach

— in the sense that many functionalities are
Implemented as processes

57

real life OS

 unix BSD — monolithic “exec within user
proc.”

* linux - hybrid approach
— system is “executed within user process”

— some OS tasks are demanded to special
processes (kernel threads)

— modular, efficient, not reliable as microkernel

e microkernels
— mach, chorus, L4

58

real life OS: windows

Services Applications Environment

System Processes
Subsystems

[]
« MS started with —
ervice -
control mgr. ﬁ |W|ndowsJ
- . - Task Manager
u 0s/2
microkernel in mind ‘ oL .- [o=2]
Winlogon —
User
Session Services.exe application POSIX |
manager Subsystem DLLs| Windows DLLs |
 notreal a
NTDLL.DLL |

microkernel since

Kernel mode

System
threads

System Service Dispatcher

k | contains
(Kernel mode callable interfaces)
- Windows
raphic code v g 29 5| o
efiac) wl =z 4 F| 93 3 GDI
0¥ x| 28 | 25 (338|855 [3.8] 52 |gac
Deviceaffl & | 92 | <o |Z35| 35 [§73| &5 (288
File Sys. Tl Sa [53%|<T | 2 é* g z Graphics
Drivers =) drivers
Kernel

Hardware Abstraction Layer (HAL)

Hardware interfaces (buses, 1/O devices, interrupts,
interval timers, DMA, memory cache control, etc.)

	Process Description and Control
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Requirements of an Operating System
	Slide 10
	Process Creation
	Slide 12
	Slide 13
	Process Termination
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Example Execution
	Trace of Process
	Slide 22
	Two-State Process Model
	Five-State Process Model
	Process States
	Using Two Queues
	Multiple Blocked Queues
	Suspended Processes
	Two Suspend States
	Reasons for Process Suspension
	Slide 31
	Process Image
	Processes and Resources
	Process Control Block
	Process Elements
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Process Table
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	mode switch
	When to Switch a Process
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Execution of the Operating System
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

