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processes
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i process

• a program in execution (running) on a 
computer

• characterized by... 
– at least one execution thread

– an associated set of system resources

– a current state of CPU (and possibly other 
resources)
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i threads

• the entity that can be assigned to, and 
executed on, a processor
– it is meaningful only within a process

– described by
• the value of the program counter

• the value of the CPU regisers

• in modern operating systems a process may 
contains one or more thread

• we assume it contains one thread
– unless otherwise specified

not on 
the book



4

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
, 

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i summary

• OS – process interaction
– the point of view of the process

– the point of view of the OS

• system calls

• process lifecycle

• state diagrams for processes

• representation within OS
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i the point of view of the process

• it explicitly interacts with OS by means of 
system calls (syscalls)

• like procedure calls but...
– syscall are made available by OS 

– can perform privileged operations

• syscalls are not called using regular “call”  
instructions
– special instruction

– software interrupt
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i OS and processes interaction

Kernel

P
ro

ce
ss

 1

P
ro

ce
ss

 2

P
ro

ce
ss

 n

executes in 
user mode

executes in 
kernel mode

system
call

.....
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i classes of syscalls

• I/O

– read and write (need a communication channel)

• resources allocation/deallocation

– communication channels (with i/o devices or other processes)

– memory

– etc.

• processes control

– create, kill, wait for..., stop, continue, debug, etc.

• resource management (i.e. miscellanea)

– change attributes (for files, devices, comm. channels, etc. )

– set system values (sys. clock, routing table, ecc.)

not on 
the book
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i the point of view of the OS

• when a syscall is executed, OS can...
– … immediately doing what it is asked for  

and returning to process execution

– … postpone the request and 
blocking the process until the request can be 
fulfilled
• e.g. a read syscall may require a disk operation, so 

read cannot be immediately fulfilled  
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i the point of view of the OS

• often more processes can be executed
– but cpu is only one (or are limited in number)

• OS can interleave the execution of multiple 
processes

• OS can choose which one to run
– maximize processor utilization 

– providing reasonable response time

• decisions are taken by the “short time cpu 
scheduler”
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i a model of process lifecycle

• creation
– why and how a process is created?

• execution
– regular “unprivileged” computation

– syscalls (possibly blocking)

• termination
– regular (it asks the OS to terminate)

– error (illegal instruction, div. by zero, ecc.)
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i Process Creation
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i process creation

• but...

• in modern operating systems all causes are 
implemented by

process spawning

• but for the first process!
– it is created at boot time and never dies 

(usually)
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i processes tree

• every process has a parent
– the one that asked for its creation

• but for the first process 
– which is the root of the tree
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i Process Termination
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i Process Termination
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i process termination

• normal completion is asked by a process by 
calling a specific syscall

• other form of termination when something 
wrong is detected...
– during the execution of a syscall
• of the process (e.g. memory unavailable)

• of other processes (e.g. regular termination of A 
implies killing child B)

– during handling of an interrupt
• e.g. div. by zero, illegal instruction, illegal memory 

access, etc.
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i scheduling and dispatching

• scheduling
– deciding which is the next process executed by 

the CPU

• dispatching
– setting up CPU registers to execute the process
• i.e. restore the context for the process
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i scheduler vs. dispatcher

• scheduling and dispatching are usually 
performed together by the same routine

• we use “scheduler” or “dispatcher” 
depending on the aspect we need to 
emphasize
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i dispatching example

• what instructions are executed by the cpu?
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Processes 
and 

Memory
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i 

Trace of Process
• Sequence of instruction (addresses) for each 

process
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i 

• The dispatcher 
switches the 
processor from 
one process to 
another 
(process 
switch)

Dispatcher
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i Two-State Process Model
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i Five-State Process Model
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i Process States
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One sequential I/O device



27

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
, 

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Many sequential I/O devices
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i Suspended Processes

• Processor is faster than I/O so many 
processes could be waiting for I/O

• Swap these processes to disk to free up 
memory

• Blocked state becomes suspend state 
when swapped to disk

• Two new states
– Blocked/Suspend
– Ready/Suspend
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i Two New States
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i 

Several Reasons for 
Process Suspension
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process description
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i Process Image
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i 

OS controls assignment of  
resources to processes
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i Process Control Block (PCB)
• contains data about one 

process
– one instance for each process

• contains all the information we 
need  to...
– ...interrupt a running process
– ...resume execution

• created and managed by the 
operating system

• allows support for multiple 
processes



35

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
, 

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i 

Process Elements in PCB
 they largely depend on the OS

• Process Identifier (PID)
• State (ready, blocked, etc.)

– if blocked, events the process is waiting for
• Priority (for the scheduler)
• saved CPU registers and PC (a.k.a. context)
• Memory pointers (program, data, stack, tables, etc.)
• I/O status information (open files, outstanding I/O 

requests, inter-processes comunication, etc)
• Accounting information (CPU time used, limits, etc.)
• user that owns the process, and/or privileges
• process that created the process
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i Data Structuring
• PCB – PCB pointers
– parent-child (creator-created) relationship with 

another process

• queues
– all processes in a waiting state for a particular 

priority level may be linked in a queue. 
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i Process Creation

• Assign a unique process identifier

• Allocate space for the process

• Initialize process control block

• Set up appropriate linkages
– e.g. add new process to linked list used for 

scheduling queue

• Create or expand other data structures
– e.g. maintain an accounting file
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i PCB synonyms

• process descriptor

• task control block

• task descriptor

linux

• task_struct
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i PCB related data structures

• process table

• memory tables

• I/O tables

• file tables
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i Process Table

• one entry for each process

• contains a minimal amount of information 
needed to activate the process
– usually a “pointer” to the PCB

– it may be a complex data structure (tree, hash 
table, ecc.)
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i Memory Tables

• Allocation of main memory to processes

• Allocation of secondary memory to 
processes

• Protection attributes for access to shared 
memory regions

• Information needed to manage virtual 
memory
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i I/O Tables

• I/O device is available or assigned

• Status of I/O operation

• Location in main memory being used as 
the source or destination of the I/O transfer
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i File Tables

• Existence of files

• Location on secondary memory

• Current Status

• Attributes

• Sometimes this information is maintained 
by a file management system
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i 

process control



45

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
, 

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i mode switch
• two cases
– user-mode → kernel-mode
• triggered by an interrupt or a system call

• set cpu in priviledged mode

• may save the cpu state

– kernel-mode → user-mode
• triggered by the kernel when it “decides” to 

resume process execution

• set cpu in unpriviledged mode

• may restore all or part of the cpu state
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i process switch (dispatching)
• a process switch assigns the cpu to a 

different process

– before: P
1
 running, P

2
 ready

– after: P
1
 not running, P

2
 running

• it is performed in kernel-mode
– it requires two mode switches

1 user-mode → kernel-mode before the process switch
– triggered by interrupt, trap or system call

– kernel possibly fulfill a request (e.g. I/O)

2 kernel-mode → user-mode after the process switch
– into the process chosen by the kernel (scheduler)
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i process switch

• it modifies OS data structures

– set proper state in PCB of P
1
 and P

2

– update queues

• move P
1
 into the appropriate queue

• move P
2
 out of the ready queue

– update CPU memory tables for the image of P
2
 

• the next mode switch (kernel-mode → user-
mode) will restore the cpu state of P

2
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i 

typical situations for 
switching mode and/or process
• clock interrupt
– process has executed for the maximum 

allowable time slice

– always switch process

• system call
– process switch when it is a blocking I/O request

– OS may check if other processes have greater 
priority and possibly switch process
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i 

typical situations for 
switching mode and maybe process
• I/O interrupt
– a blocked process may become ready

– process switch depends on OS policies and 
priorities

• other interrupts (a.k.a traps)
– memory page fault (virtual memory)
• current process becomes blocked (waiting for the 

page) and process is switched

– error or exception
• current process usually die and process is switched



50

©
 2

0
0

4
 -

 2
0

1
2

 w
ill

ia
m

 s
ta

lli
n

gs
, 

m
a

u
riz

io
 p

i z
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i execution of the OS

• the OS is executed by the cpu

• is the OS a process?
– that is, when the OS is executed, the memory 

layout seen by the processor is that of a 
process?

• several architectures are possible
– non-process kernel

– kernel execution within user processes

– process-based operating system
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i non-process kernel
• kernel is executed outside of any process
– kernel has its own “memory space” 
• there is not a OS process anyway!

• inefficient (memory tables reconfiguration for each 
mode switch)

– kernel implements tricks to access the images 
of processes

– obsolete
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i 

Execution Within User 
Processes

• the kernel appears in the memory layout of 
each process 
– shared pages

• no reconfiguration of CPU memory table is 
needed (efficient)
– kernel execution need only a mode switch 

– waste of virtual address space for the kernel is 
negligible
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Execution Within
User Processes

• each process has its 
own image

• image contains also 
– kernel stack

– kernel program

– kernel data

• kernel program and data 
are shared by all images
– kernel mode is needed to 

read and write them
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Execution Within User 
Processes

• to fulfill a system call or interrupt...
– mode is switched

– process is not switched

– current memory image remain the same

– both kernel data and current process data can 
be accessed

• a process switch occurs if and only if a new 
process is scheduled and dispatched
– process switch is the only activity that can be 

considered outside of any process
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process-based OS (microkernel)
• as “execution in user process” but kernel 

functionalities are minimal
– thread/process scheduling and dispatching

– Inter Process Communication (IPC)

– direct access from os-processes to hardware

• Implement many os functionalities as a 
system process
– system call are actually IPC messages

– process switch and inter-process 
communication are the only activities that are 
outside of any process 
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process-based OS: design choices
• may processes run in kernel mode to 

access hardware? 

• drivers are implemented in the kernel or as 
processes?

• consider the efficiency of the alternatives of 
an I/O operation
– how many inter-processes messages?

– how many mode switches?

– how many process switches?

– how many times dispatcher run?
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i process-based OS (microkernel)

• modular and robust

• flexible
– services may be added, removed or distributed

• usually less efficient than “kernel execution 
within user process”

• Windows adopts this approach
– in the sense that many functionalities are 

implemented as processes
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i real life OS

• unix BSD – monolithic “exec within user 
proc.”

• linux - hybrid approach
– system is “executed within user process”

– some OS tasks are demanded to special 
processes (kernel threads)

– modular, efficient, not reliable as microkernel

• microkernels
– mach, chorus, L4
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i real life OS: windows

• MS started with 
microkernel in mind

• not real a 
microkernel since 
NT4 
– kernel contains 

graphic code
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