file management

file management

» that part of the OS that manage data on disk
structured as files and directories

- usually part of the os kernel, might be a process
In microkernel architecture

- usually based on block-oriented devices (i.e.
disks), but also on file (e.g., in virtual
machines)

* properties
- structure
- persistent (and “reliable” to crashes etc.)
- shared among several processes

file operations

create a new file
open an existing file

- needs specification of what operations are
requested

delete

read (usually blocking)
write (usually non-blocking)
close

- flushes buffers

directory operations

e create
e delete
* change
- create a file or directory in it

- delete a file or directory in it

- move a file or directory from somewhere else into
the directory

- move a file or directory for the directory to
somewhere else

objectives

e reliability: guarantee that the data in the file are

always valid
- upon regular operation

- upon crashes
- upon concurrent access
- can be thought a huge data structure with
consistency invariants
 optimize performance
* independency on storage device types
 security support for multiuser systems

2 “fillesystem”

the book

e an overloaded word

- the rules of a filesystem (i.e. the rules describing the
data structures stored on disk)

 specification of the FAT filesystem
- an instance of the filesystem

 mount a filesystem
 mount a partition containing a filesystem

- the part of the kernel implementing the filesystem
* fix a bug in the filesystem

« actual meaning should be clear from the context

JAN file systems need
data structures...

» to keep track of which blocks are allocated to a
given file

* to keep track of free blocks
* to keep names, directories, access rights, etc

e consistency and check

- periodic, or after a crash

- data can be lost but consistency is preserved
e recovery (journaled filesystems)

journaling

 when a change is requested perform it according to
the following approach

- write a journal of what have to be done
- periodically
* stop receiving further requests

 perform the action in the journal

* when all the actions are done empty the
journal

» after a crash always perform the action in the
journal

- actions should be idempotent!
* Improve reliability, degrade performance

UNIX File Management

* Types of files
- Regqular, or ordinary
» a sequence of bytes (no records!)
- Directory
- Special (character of block devices)
- Named pipes (FIFO)
- Links (hard links)
- Symbolic links (soft links)

Inodes

e |Index node

» Control structure that contains key
information for a particular file

10

File Mode

Link Count
Owner ID
Group ID

File Size

File Addresses
Last Accessed
Last Modified

Inode Modified

16-bit flag that stores access and execution permissions associated with
the file.

12-14 File type (regular, directory, character or block special, FIFO pipe
9-11 Execution flags

8 Owner read permission

7 Owner write permission
Owner execute permission
Group read permission
Group write permission
Group execute permission
Other read permission
Other write permission
Other execute permission

Lo I T N R L N SN

Number of directorv references to this inode
Individual owner of file

Group owner associated with this file
Number of bytes in file

39 bytes of address information

Time of last file access

Time of last file modification

Time of last inode modification

11

File
info

Direct(0)

Directi1)

Direct(Z)

Direct(3)

Direct(4)

Direct(5)

Directi6)

Direct(7)

Direct(8)

Direct(9)

single
indirect

douhble
indirect

triple
indirect

Inode .
—

Blocks on disk

12
Figure 12.13 Layout of a UNIX File on Disk

Inode table Directory
il Namel
-« /
i2 Name2
i3 Nameld
id Named

Figure 12.14 UNIX Directories and Inodes

13

AN hard and soft links

the book

 hard links file

- more filenames can point to the same inode
- each name is said hard link
- an hard link is always valid
- an inode is deleted if and only if it has no names
* reference counting
e soft links
- a soft link is a file that contains a pathname
- they can be relative or absolute
- they can be invalid

14

Linux Virtual File System

* Uniform file system interface to user
processes

* Represents any conceivable file system’s
general feature and behavior

* Assumes files are objects that share
basic properties regardless of the target
file system

15

[User Process]

System call
o

System calls interface

S

Virtual File
System (VFS)

Linux kernel

extkFs ext2 Fs
Page Cache
Device drivers
/O request
Y Hardware

Dizsk controller

Figure 12.15 Linux Virtual File System Context

16

Primary Objects in VFS

Superblock object

- Represents a specific mounted file
system

Inode object

- Represents a specific file
Dentry object

- Represents a specific directory entry
File object

- Represents an open file associated with a
pProcess

17

TAN ext2 file system

the book

F i

£ F

Boot
Blggk Block group 0 Block group n

I A |
prw A

--SUDer Group |Data block| inode | inode
Block | Descriptors| Bitmap |Bitmap| Table Data blocks

1 block n block 1 block 1 block n blocks n blocks
e for each group

- all groups are of the same length

- each group says where all other groups are
(redundancy)

- 2 bitmaps for free/allocated spaces
* both data blocks and inodes of this group

18

AN ext2 file system

the book o
name_len
0 21 12 1 2 - [NOD (N0 NOD
12 22 12 122 ST/ RRY!
24 33 16 | 5]2|h o|m e |1 \O \NO|NO
40 67 28 |32 u|s ||\
22 0 186 |7l1]le|1|da|£f|i|1]|e]|\0D
68 34 12 |4]2]s|b|i|n
» directory stored in variable record length format

e stored as afile
e given the inode /, where is it stored on the disk?
group: i/ inodes_in_one_group (/: the integer quotient)

inode: i % inodes_in_one_group (%: is the reminder)

19

o ext2 + journal

ext3

20

	Slide 1
	Slide 2
	File Operations
	Slide 4
	Objectives for a File Management System
	Slide 6
	Slide 7
	Slide 8
	UNIX File Management
	Inodes
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Linux Virtual File System
	Slide 16
	Primary Objects in VFS
	Slide 18
	Slide 19
	Slide 20

