
1

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

windows

maurizio pizzonia

roma tre university

2

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
lyreferences

M. Russinovich, D. A. Solomon
Windows® Internals: Including Windows
Server 2008 and Windows Vista 5th ed.
Microsoft Press

3

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

3

architecture overview

• kernel: overloaded word

– according to MS it is only a part of what runs in kernel mode

• graphics is in kernel mode

• user applications and services never access syscalls directly

– use “subsystems DLLs” that goes with “environment subsystems”

• several “system support processes”

4

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

4

windows processes

• processes “usually” form a tree

– the parent is the creator of the process

• if the parent dies the info is not updated in the child

– parent information is not reliable

• so... tree is only informative, Windows does not rely on
that

• besides, Windows uses kernel threads for its own
needs

5

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

architecture details: user mode

6

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
lyuser processes and

relationships with Windows
• syscalls are never directly performed by processes

– syscalls are not documented

– decoupling layers

• Ntdll.dll (documented)

• substystem DLLs (preferred way to ask Windows something)

• subystems: windows, posix, os/2

– decouple user processes from underlying OS

• e.g. allows “easy” porting of unix software

– are DLLs + supporting process

• supporting process: see “environment subsystem”

• subsystem DLLs may call Ntdll.dll, interact with supporting process or just
update a “local state”

• are subsystems really needed?

– my impression is that subsystems are a “legacy” feature

7

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

windows subsystem

• a particular subsystem

• DLLs

– kernel32.dll, Advapi32.dll, User32.dll Gdi32.dll

• environment subsystem process: csrss.exe

– it should be always running (otherwise whole system crashes)

• the only one, others run on-demand

– in NT 3.51 it contained a lot of stuff (graphics)

– now it is almost empty (console applications)

• kernel parts

– graphics: win32k.sys

• window manager (mouse, windows, graphic message handling, etc.)

• graphic rendering (rendering of text, drawing, etc.)

8

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

typical system processes

• windows subsystem
– csrss.exe

• session manager
– smss.exe, winlogon.exe, winint.exe

• service control manager (scm)
– services.exe, svchost.exe

• ...

9

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

sessions manager and boot

• smss is the first process created at boot

– smss is the only process to use syscalls directly since
windows subsystem is not started yet!

– it starts Autochk (filesystem check)

– it starts wininit.exe

• which starts csrss.exe

– which loads win32k.sys (and the video switches to correct resolution)

• and services.exe which starts all configured services

• smss also waits for new session requests, and for each session...

– starts winlogon.exe (the password dialog box)

• when a logon happens it (indirectly) starts explorer.exe

– starts new csrss.exe

• to have more sessions you need “terminal server” and proper
licensing

10

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
lyservices

• managed by the service control manager (scm, services.exe)

– scm is started by wininit.exe

• it is in charge of starting/stopping/pausing services

– configured in the registry

– edited by Control panel → Admin Tool → Services

• a single process can host more services

– the standard generic host service: svchost.exe

– in this case services hosted are implemented as DLLs

• such processes have specific APIs to interact with the control manager

– e.g. notify correct start-up, pause, start a guest service, etc.

• services have three names

– the executable, the name in the registry, the name shown by the
configuration utilities

• e.g.

– EventLog, TaskScheduler, Spooler, etc.

11

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

11

architecture details
kernel mode

executive

12

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

12

architecture details
kernel mode

• hal
– handle motherboards

differences

• kernel
– basic threads and processes scheduler, synchronization,

interrupt handling

– no I/O

• executive
– executive objects

– memory management, real process/thread management,
security, I/O, networking, inter-process communication,etc.

13

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

resources, objects, and handles

• any resources is view by a process as an executive
object

– e.g. an open file, a process, a session, etc.

• an executive object is stored in kernel space

• in user space, executive objects are represented by
handles

– processes use them through handles

• object manager

– part of executive

– keep a process handle table for each process

• it contains handle that the process can use

• most API parameters are handles

14

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
lyexecutive objects types

type Description

Process A collection of executable threads along with virtual addressing and control information.

Thread An entity containing code in execution, inside a process.

Job A collection of processes.

File An open file or an I/O device.

File mapping
object

A region of memory mapped to a file.

Access token The access rights for a process

Event An object which encapsulates information to be notified to a processes of something.

Semaphore/Mutex Objects which serialize access to other resources.

Timer An objects which notifies processes at fixed intervals.

Key A registry key.

Desktop A logical display surface to contain GUI elements.

Clipboard A temporary repository for other objects.

WindowStation An object containing a group of Desktop objects, one Clipboard and other user objects.

Symbolic link A reference to other objects, via which the referred object can be used.
14

15

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

object sharing

• objects can be shared among processes

• some are “anonymous”

• some are named
– identified by a string

• there exists system of directory
– string is a pathname
– not persistent

• it exists only in memory

16

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

memory management

• process address space contains shared kernel space

• kernel space/user space

– 32bit systems: 2GB/2GB (config. 1GB/3GB)

– 64bit systems: 6TB/8TB

• virtual memory

• memory mapped files and disk cache

• process heap managed in kernel mode

• two kernel space heaps

– one is not paged

– one is paged
• windows keeps a lot of data, it needs paging also in kernel space

• copy-on-write

– posix environment uses it for implementing fork operations

17

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
lymemory management

components
• balance set manager

– decide resident set for processes
• in MS terminology it is called “working set” (no global replacement policy!)

– eviction strategy: aging

– kernel thread, run once per second

– also part of kernel space can be evicted

• page buffering (in MS terminology “stand by pages”)
– two kernel thread for cleaning the pages

– one kernel thread for zeroing the pages
• new empty pages are always given a zeroed frame

• swap (page file)
– one kernel thread to change its size

• disk cache
– cache part of files using memory mapping

18

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

page frames states
• from russinovich,

solomon

19

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

disk cache

• caches part of files

• two kinds of blocks
– regular read/write

• mapped on system address space

• act as a middle layer between processes and the filesystem

– memory mapped files
• mapped on process address space

• size of cache changes along with system resident
set
– balance manager can change it dynamically

20

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

cpu scheduling

• internally: 32 priority level

– 31-16: “real time”

– 15-1: dynamic

– 0: system (the zeroing page thread)

• each level has its queue

• preemption

• at user level: 5 priority levels (base priority)

– high, above normal, normal, below normal, idle

– each of them have an internal priority dynamically assigned
within a range of 5 internal priority levels

21

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

priority levels

22

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

priority boost

• windows increases internal process
priority after waiting for
– i/o completion
– synchronization events
– user input from GUI

• after a long time in ready state without
being scheduled
– to avoid starvation

23

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

interactive processes

• system clock
– interrupt every 10-15ms

• default quantum
– windows xp, 2 clock intervals

– servers, 12 clock intervals
• less context switches (more efficient) but slower interactive

response

• quantum boost for foreground processes (i.e. with
focused window)
– windows xp: 6 clock intervals

24

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

interactive processes

• quantum accounting
– in units that are 1/3 of a clock interval
– at each clock interrupt

• running process has quantum decremented by 3
units

• waiting processes have quantum decremented by
1 unit

• check for quantum expired

• when quantum expires
– put at the end of its queue (round robin)

25

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

registry

• it's like a filesystem for small “data element”
– persistent: realized as a set of files (hives)

• structure
– key/subkey = directory/subdirectory

– value = file
• typed: strings, numbers, arrays, symbolic links

• symbolic links
– not persistent!

– re-created after each boot

26

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

standard registry tree

• six roots

– cannot be changed

– named with abbreviations HK...

• three are “real”

– HKEY_USERS (HKU)

– HKEY_CLASSES_ROOT (HKCR)

– HKEY_LOCAL_MACHINE (HKLM)

• others are not

– HKEY_CURRENT_USER (HKCU)
• link to something within HKU

– HKEY_CURRENT_CONFIG (HKCC)
• link to HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current

– HKEY_PERFORMANCE_DATA (HKPD)
• performance data, created on-the-fly, it does not appear in regedit

27

©
 2

0
1

2

m
a

u
riz

io
 p

iz
zo

n
ia

 –
 o

p
e

ra
tin

g
sy

st
e

m
s

–
 r

o
m

a
 t

re
 u

n
iv

e
rs

ity
,

ita
ly

registry content

• HKEY_USERS

– preferences of each user

– HKCU points to the user that is asking the request

• HKEY_CLASSES_ROOT

– file associations and com object data

• HKEY_LOCAL_MACHINE

– HARDWARE
• hardware collected data at boot

– SECURITY
• security staff, e.g. user accounts and SAM (also linked under HKLM)

– SOFTWARE
• one subkey for each installed software, content depends on the sotware

– SYSTEM
• windows, system wide, configuration (needed at boot)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

