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architecture overview

• kernel: overloaded word

– according to MS it is only a part of what runs in kernel mode

• graphics is in kernel mode

• user applications and services never access syscalls directly

– use “subsystems DLLs” that goes with “environment subsystems”

• several “system support processes”
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4

windows processes

• processes “usually” form a tree

– the parent is the creator of the process

• if the parent dies the info is not updated in the child

– parent information is not reliable

• so... tree is only informative, Windows does not rely on 
that

• besides, Windows uses kernel threads for its own 
needs 
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architecture details: user mode
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relationships with Windows
• syscalls are never directly performed by processes

– syscalls are not documented

– decoupling layers 

• Ntdll.dll (documented) 

• substystem DLLs (preferred way to ask Windows something)

• subystems: windows, posix, os/2

– decouple user processes from underlying OS

• e.g. allows “easy” porting of unix software

– are DLLs + supporting process

• supporting process: see “environment subsystem”

• subsystem DLLs may call Ntdll.dll, interact with supporting process or just 
update a “local state”

• are subsystems really needed?

– my impression is that subsystems are a “legacy” feature
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windows subsystem

• a particular subsystem

• DLLs

– kernel32.dll, Advapi32.dll, User32.dll Gdi32.dll

• environment subsystem process: csrss.exe

– it should be always running (otherwise whole system crashes)

• the only one, others run on-demand

– in NT 3.51 it contained a lot of stuff (graphics)

– now it is almost empty (console applications)

• kernel parts

– graphics: win32k.sys

• window manager (mouse, windows, graphic message handling, etc.)

• graphic rendering (rendering of text, drawing, etc.)
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typical system processes

• windows subsystem
– csrss.exe

• session manager
– smss.exe, winlogon.exe, winint.exe

• service control manager (scm) 
– services.exe, svchost.exe

• ...
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sessions manager and boot

• smss is the first process created at boot

– smss is the only process to use syscalls directly since 
windows subsystem is not started yet!

– it starts Autochk (filesystem check)

– it starts wininit.exe

• which starts csrss.exe

– which loads win32k.sys (and the video switches to correct resolution)

• and services.exe which starts all configured services

• smss also waits for new session requests, and for each session...

– starts winlogon.exe (the password dialog box)

• when a logon happens it (indirectly) starts explorer.exe

– starts new csrss.exe

• to have more sessions you need “terminal server” and proper 
licensing
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• managed by the service control manager (scm, services.exe)

– scm is started by wininit.exe

•  it is in charge of starting/stopping/pausing services

– configured in the registry

– edited by Control panel → Admin Tool → Services

• a single process can host more services

– the standard generic host service: svchost.exe

– in this case services hosted are implemented as DLLs

• such processes have specific APIs to interact with the control manager

– e.g. notify correct start-up, pause, start a guest service, etc.

• services have three names

– the executable, the name in the registry, the name shown by the 
configuration utilities

• e.g.

– EventLog, TaskScheduler, Spooler, etc. 
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11

architecture details
kernel mode

executive
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12

architecture details
kernel mode

• hal
– handle motherboards

differences

• kernel
– basic threads and processes scheduler, synchronization, 

interrupt handling

– no I/O

• executive
– executive objects

– memory management, real process/thread management, 
security, I/O, networking, inter-process communication,etc.
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resources, objects, and handles 

• any resources is view by a process as an executive 
object

– e.g. an open file, a process, a session, etc.

• an executive object is stored in kernel space

• in user space, executive objects are represented by 
handles

– processes use them through handles

• object manager

– part of executive

– keep a process handle table for each process

• it contains handle that the process can use

• most API parameters are handles
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type Description

Process A collection of executable threads along with virtual addressing and control information.

Thread An entity containing code in execution, inside a process.

Job A collection of processes.

File An open file or an I/O device.

File mapping 
object

A region of memory mapped to a file.

Access token The access rights for a process

Event An object which encapsulates information to be notified to a processes of something.

Semaphore/Mutex Objects which serialize access to other resources.

Timer An objects which notifies processes at fixed intervals.

Key A registry key.

Desktop A logical display surface to contain GUI elements.

Clipboard A temporary repository for other objects.

WindowStation An object containing a group of Desktop objects, one Clipboard and other user objects.

Symbolic link A reference to other objects, via which the referred object can be used.
14
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object sharing

• objects can be shared among processes

• some are “anonymous”

• some are named
– identified by a string

• there exists system of directory
– string is a pathname
– not persistent

• it exists only in memory
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memory management

• process address space contains shared kernel space

• kernel space/user space

– 32bit systems:   2GB/2GB  (config. 1GB/3GB)

– 64bit systems:  6TB/8TB

• virtual memory 

• memory mapped files and disk cache

• process heap managed in kernel mode

• two kernel space heaps

– one is not paged

– one is paged
• windows keeps a lot of data, it needs paging also in kernel space

• copy-on-write

– posix environment uses it for implementing fork operations
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components 
• balance set manager

– decide resident set for processes
• in MS terminology it is called “working set” (no global replacement policy!)

– eviction strategy: aging

– kernel thread, run once per second

– also part of kernel space can be evicted

• page buffering (in MS terminology “stand by pages”)
– two kernel thread for cleaning the pages

– one kernel thread for zeroing the pages
• new empty pages are always given a  zeroed frame 

• swap (page file) 
– one kernel thread to change its size

• disk cache
– cache part of files using memory mapping
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page frames states
• from russinovich, 

solomon
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disk cache

• caches part of files

• two kinds of blocks
– regular read/write

• mapped on system address space

• act as a middle layer between processes and the filesystem 

– memory mapped files
• mapped on process address space

• size of cache changes along with system resident 
set
– balance manager can change it dynamically
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cpu scheduling

• internally: 32 priority level

– 31-16: “real time”

– 15-1: dynamic

– 0: system (the zeroing page thread)

• each level has its queue

• preemption

• at user level: 5 priority levels (base priority)

– high, above normal, normal, below normal, idle

– each of them have an internal priority dynamically assigned 
within a range of 5 internal priority levels
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priority levels
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priority boost

• windows increases internal process 
priority after waiting for
– i/o completion
– synchronization events
– user input from GUI 

• after a long time in ready state without 
being scheduled
– to avoid starvation
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interactive processes

• system clock
– interrupt every 10-15ms

• default quantum
– windows xp, 2 clock intervals

– servers, 12 clock intervals
• less context switches (more efficient) but slower interactive 

response

• quantum boost for foreground processes (i.e. with 
focused window)
– windows xp: 6 clock intervals
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interactive processes

• quantum accounting
– in units that are 1/3 of a clock interval
– at each clock interrupt

• running process has quantum decremented by 3 
units

• waiting processes have quantum decremented by 
1 unit 

• check for quantum expired

• when quantum expires
– put at the end of its queue (round robin)
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registry

• it's like a filesystem for small “data element”
– persistent: realized as a set of files (hives)

• structure
– key/subkey = directory/subdirectory

– value = file
• typed: strings, numbers, arrays, symbolic links

• symbolic links 
– not persistent!

– re-created after each boot
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standard registry tree

• six roots

– cannot be changed

– named with abbreviations HK...

• three are “real”

– HKEY_USERS (HKU)

– HKEY_CLASSES_ROOT (HKCR)

– HKEY_LOCAL_MACHINE (HKLM)

• others are not

– HKEY_CURRENT_USER (HKCU)
• link to something within HKU

– HKEY_CURRENT_CONFIG (HKCC)
• link to HKLM\SYSTEM\CurrentControlSet\Hardware Profiles\Current

– HKEY_PERFORMANCE_DATA (HKPD)
• performance data, created on-the-fly, it does not appear in regedit
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registry content

• HKEY_USERS

– preferences of each user

– HKCU points to the user that is asking the request

• HKEY_CLASSES_ROOT 

– file associations and com object data

• HKEY_LOCAL_MACHINE

– HARDWARE
• hardware collected data at boot

– SECURITY
• security staff, e.g. user accounts and SAM (also linked under HKLM)

– SOFTWARE
• one subkey for each installed software, content depends on the sotware

– SYSTEM
• windows, system wide, configuration (needed at boot)
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