
1

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Operating Systems Overview

2

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i operating system

• no clear traditional definition
– each definition cover a distinct aspect

• an interface between applications and hardware
– true, this was the first reason for having an OS

• a set of programs that provides basic
functionalities for managing system resources
– true, but the OS is not only a “library” of

functionalities

• a program that “controls” the execution of
application programs
– e.g. it decides which program is running and when

3

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i my definition

• a software that does not depend on any
other software in the computer
– do you know what “depend” means?
– in a certain sense it only depends on hardware

in current PC and servers it also is...
• a software that...

– considers “activities” to be carried on and...
– assigns “resources” to them

• “activities” usually means “processes”

• the latter is the most interesting definition

not on
the book

4

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Operating System as a
Resource Manager

• resource: anything needed for program
execution, e.g.
– cpu time
– I/O devices
– memory
– executable code
– etc.

• an os manages...
– resources

• comprising “internal” data structures
– processes

5

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i my definition

if the hardware is so small that cannot carry
on many tasks (e.g. a mobile phone)...
– less and less frequent

• ...it makes simple for applicative software to
interface with hardware

• hw interface on bigger systems is not the
primary concern
– handled with “drivers”

not on
the book

6

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i kernel

• its the OS as defined above
• it is always in main memory
• contains most frequently used functionality
• also called “nucleus”

7

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i kernel

• a very interesting piece of software!

• can be studied from several point of views
– structural

• which concepts realize?

• which data structures adopt?

• what modules it contains?

• what are the interfaces among modules?

– behavioral
• which strategies adopt to optimize usage resources?

• which algorithms it implements to maintain its data structures?

– synchronization
• oops! many things happens in the kernel at the same time. Consistency

is hard to maintain. Large number of techniques uses. Completeley
indpendent by OS study, but largely developed by the same
community.

not on
the book

8

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i kernel

• didactic approach vs. reality
– structural

• what is the easiest way to realize a “decent” kernel?
• what is there in a real kernel?

– behavioral
• what are the easiest strategies?
• what are the ones that are adopted in practice?

– synchronization
• too complicated... there is a specific course for this ;)

not on
the book

9

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i system software

• it is the software that is usually installed
when the OS is installed on a computer
system
– e.g.

basic C runtime libraries,
sw to access the hard disk directory,
graphical user interface,
etc.

not on
the book

10

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i overloaded language

• actually “operating system” is an overloaded
word

• it means
– the kernel or
– the kernel plus the other system software

• meaning should be clear from the context

not on
the book

11

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i computer system layers

applications

system tools

kernel

Computer hardware

OS designerusers

{system
software

libraries

system
administrator

not on
the book

programmer

12

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i OS objectives

• convenience
– makes the computer more convenient to use

(for programmers and users)

• efficiency
– allows computer system resources to be used

in an efficient manner

• ability to evolve
– permit effective development, testing, and

introduction of new software (debug, isolation)

13

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i services provided by the os

• services for users
– program execution, usually many at the same time
– error detection and response
– support for program development
– security (user login, user confinement, etc.)
– accounting

• services for programs (or programmers)
– resource management

• es. memory and cpu time
– access to I/O devices

• es. files

14

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i efficiency: i/o vs. cpu

15

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i uniprogramming

• simple approach: execution must wait for I/O to
complete before preceding

I/O start I/O end
I/O start

16

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i multiprogramming

• when one job needs to wait for I/O, the processor
can switch to the other job

17

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i multiprogramming

18

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i the user's point of view

• from the point of view of the user is a way to keep
many applications active at the same time
– e.g. I got frustrated by “uniprogrammed” smartphones

need to close an app before open another one loosing
the work

• PC started to be multiprogrammed in 90s (about)
– windows 3.1, Mac classic
– GUIs greatly rise the demand of the user

• kernels that support multiprogramming are much more
complex
– but, it is a “must have”
– … and it is one of the main topics of this course

not on
the book

19

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

I/O bound vs. CPU bound
processes

• I/O bound
– mostly waiting for some data to arrive
– use cpu for requesting more data from devices
– e.g. DBMS, interactive applications

• cpu bound
– mostly perform computation
– rarely performs i/o to get data to compute
– e.g. multimedia coding/encoding, complex

graphic rendering, etc.

not on
the book

20

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

CPU
bound

I/O
bound

I/O
bound

I/O bound vs. CPU bound
processes

• a more complex example
– sharable resources: cpu time and memory
– non-sharable resources: disk, terminal, printer

21

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Utilization Histograms

22

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Major Achievements of Modern
OSes

• Processes
• Memory Management
• Information protection and security
• Scheduling and resource management
• System structure

23

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i processes

• a program in execution (running) on a
computer

• a unit of activity characterized by
– an associated set of system resources

• memory regions
• open files
• etc.

– at least one execution thread with its current
state of CPU

not on
the book

24

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i threads

• the entity that can be assigned to, and
executed on, a processor
– it is meaningful only within a process
– described by

• the value of the program counter
• the value of the CPU regisers

• in modern operating systems a process may
contains one or more thread

• we always assume it contains one thread

not on
the book

25

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i security: user/system mode

• processes execute in user mode
– certain privileged machine instructions may not

be executed
– only a restricted part of main memory can be

accessed (user space)

• kernel executes in system mode
– a.k.a. kernel mode or supervisor mode
– privileged instructions can be executed
– protected areas of memory may be accessed

(kernel space)

26

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i many processes, one CPU

• only one process can be executed by one
CPU

• the other processes are somehow “forzen”
• what is needed to resume it is saved

somewere
– execution context

27

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i time sharing

• CPU time is shared among multiple users
or processes

• illusion of more CPUs

28

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i execution context

• cpu registers
• priority of the process
• is the process waiting for I/O? on which

device?
• etc.
• etc.
• etc.
• etc.
• ...

29

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

process
representation

30

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Memory Management

• Process isolation
• Automatic allocation and management
• Support of modular programming
• Protection and access control
• Long-term storage

31

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Virtual Memory

• Allows programmers to address memory
from a logical point of view

• Virtual memory can be much larger than
Real Memory
– processes see a large virtual address space

• Real Memory is used only for (part of the)
processes that are really need it

32

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Paging

• Allows process to be comprised of a
number of fixed-size blocks, called pages

• Virtual address is a page number and an
offset within the page

• Each page may be located any where in
main memory

• Real address or physical address in main
memory are managed only by the kernel

33

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Virtual Memory
and

Main Memory

34

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Virtual Memory Addressing

• virtual addresses management
– the Memory Management Unit of the CPU

translates addresses from virtual to real
• each time an machine instruction refers to memory
• this is very very frequent!

– the kernel configure MMU
• when a new process start
• when a process need more memory
• when a process need less memory

35

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Scheduling and Resource
Management

• Fairness
– Give equal and fair access to resources

• Differential responsiveness
– Discriminate among different classes of

jobs

• Efficiency
– Maximize throughput, minimize

response time, and accommodate as
many uses as possible

36

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Scheduling Elements
• queues

– at least one for each resource

• CPU
– short term

• contains processes in main memory and ready to run
• short term scheduler / dispatcher

– simple approach: round robin (circular queue)

– long term
• new jobs waiting for the processor
• long term scheduler

• I/O
– at least queue for each device
– interrupts

37

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i System Structure

• View the system as a series of levels
• Each level performs a related subset

of functions
• Each level relies on the next lower

level to perform more primitive
functions

• This decomposes a problem into a
number of more manageable
subproblems

38

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Layered Systems

Layer M-1

Operazioni del layer M-1
visibili ad altri layer

Operazioni del layer M-1
"nascoste" (visibili solo
al layer M)

Operazioni del layer M
visibili ad altri layer

© 2002, 2003 Renzo Davoli e Alberto Montresor
GNU FDL

not on
the book

39

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Hypothetical System Structure

Hardware Levels

• Level 1
– Electronic circuits
– Objects are registers, memory cells, and logic

gates
– Operations are clearing a register or reading a

memory location
• Level 2

– Processor’s instruction set
– Operations such as add, subtract, load, and

store

40

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Hypothetical System Structure

Hardware Levels

• Level 3
– Adds the concept of a procedure or subroutine,

plus call/return operations
• at this level everything of what you know in

language like C or Java can be done, but I/O

• Level 4
– Interrupts <<<< very important

41

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Hypothetical System Structure
Basic Multiprogramming and Memory

Management
• Level 5

– Process management from the point of view of
CPU (no I/O support)

– Suspend and resume processes
• execution context

• Level 6
– Secondary storage devices
– Transfer of blocks of data

• Level 7
– Creates logical address space for processes
– Organizes virtual address space into blocks

42

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Hypothetical System Structure
Process comunication, I/O, and Inter

Process Comunication
• Level 8

– Communication of information and messages
between processes

• allow client/server within a single machine

• Level 9
– Supports long-term storage of named files

• Level 10
– Provides access to external devices using

standardized interfaces

43

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Hypothetical System Structure
Process comunication, I/O, and Inter

Process Comunication
• Level 11

– Responsible for maintaining the association
between the external and internal identifiers

• Level 12
– Provides full-featured facility for the support of

processes

44

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i

Hypothetical System Structure
User Interface

• Level 13
– Provides an interface to the operating system

for the user (shell)
– windows and pointer GUI

45

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Modern Operating Systems

• Microkernel architecture
– Assigns only a few essential functions

to the kernel
• Address spaces
• Interprocess communication (IPC)
• Basic scheduling

– everything else is implemented as a
process

46

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Modern Operating Systems

• Multithreading
– Process is divided into threads that can

run concurrently
• Thread

– Dispatchable unit of work
– executes sequentially and is interruptable

• Process is a collection of one or more
threads

47

©
 2

0
0

4
 –

 2
0

1
3

w

ill
ia

m
 s

ta
lli

n
g

s,
 m

a
u

riz
io

 p
iz

zo
n

ia
 -

 s
is

te
m

i o
p

e
ra

tiv
i Modern Operating Systems

• Symmetric multiprocessing (SMP)
– There are multiple processors
– These processors share same main

memory and I/O facilities
– All processors can perform the same

functions

	Operating System Overview
	Operating System
	Slide 3
	Slide 4
	Slide 5
	Kernel
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Operating System Objectives
	Services Provided by the Operating System
	I/O Devices Slow
	Uniprogramming
	Multiprogramming
	Slide 17
	Slide 18
	Slide 19
	Example
	Utilization Histograms
	Major Achievements
	Processes
	Slide 24
	Memory Protection
	Slide 26
	Time Sharing
	Slide 28
	Slide 29
	Memory Management
	Virtual Memory
	Paging
	Slide 33
	Virtual Memory Addressing
	Scheduling and Resource Management
	Slide 36
	System Structure
	Slide 38
	Process Hardware Levels
	Slide 40
	Concepts with Multiprogramming
	Deal with External Objects
	Slide 43
	Slide 44
	Modern Operating Systems
	Slide 46
	Slide 47

