memory management

summary

 goals and requirements
 techniques that do not involve virtual memory

memory management
* tracking used and free memory
e primitives
— allocation of a certain amount of memory

— de-allocation of what allocated,
* it permits reuse of de-allocated memory

 reason for allocation request

— data structures (e.g. array, objects, ecc.)

 kernel data structures (allocator implemented in the
kernel)

 process data structures (allocator implemented by
language runtime libraries, e.g. C/C++ malloc)

— processes (within an O.S.)

summary and applicabllity

* many technigues and concepts in memory
management equally apply to memory
allocation for processes and for data
— fixed partitioning, dynamic compaction,

fragmentation, placement algorithms, buddy
system

— the book talks about a “process” but it may be any
kind of allocation request

« hardware supported techniques apply only to
processes

— virtual memory, paging, segmentation

kinds of memory and allocators

physical memory managed by the kernel

kernel

—kernel code—

allocator for

processes ‘

allocator for kernel
data structures

!

—kernel data
structures

/

Processes

~——process
—process code,

malloc allocator

|

—heap———

process——
—process code,

malloc allocator

|

—heap——

allocators inventory

* Inthe processes

— heap managed by malloc
- allocate data structures for the process

* In the kernel

— “sort of heap” managed by a “sort of malloc” in the kernel
- allocate data structures for the kernel
« remember that the kernel cannot use libraries!
* in linux this is provided by a buddy-system plus a “slab allocator”

— allocation of images of the processes
 for old OSes adopt the same approaches for data structures
« in modern OSes relies on paging and virtual memory

memory management
technigues that do not involves
virtual memory

Fixed Partitioning

* memory Is partitioned in a fixed way
« equal size
* unequal size

(a) Equal-size partitions (b) Unequal-size partitions

Fixed Partitioning

Inefficient memory use

— any program, no matter how small, occupies an
entire partition.

* the fact that same space within a partition Is
wasted Is called internal fragmentation.

Fixed Partitioning

« Equal-size partitions

— Any process or data whose size is less than or
equal to the partition size can be loaded into an
available partition

— If all partitions are full, the operating system can
swap a process out of a partition

— A process/data may not fit in a partition.

 For processes, the programmer must design the
program with overlays

— still used In hard disk partitioning
* LVM overcome such limitation (linux)

10

Placement Algorithm with

Partitions
« Equal-size partitions

— Because all partitions are of equal size, it does
not matter which partition Is used

11

Placement Algorithm with

Partitions
« Unequal-size partitions
— minimize internal

Operating
System

fragmentation T

- assign each process/data to T
the smallest partition it will e
fit into Processes\— LI —>

 one queue for each T
partition: a process might
wait until it “best fit” partition

IO —

IS free, even If there are

other partitions
availableminimize wait time

12

Placement Algorithm with
Partitions

 Unequal-size PSvsem
partitions
— minimize wait time
and, secondatrily,
internal fragmentation procese—

 one single queue

* reguest is assigned to
the best partition
available when served

dynamic partitioning

 partitions are of variable length and number
» process/data Is allocated exactly as much
memory as required

 eventually, small holes in the memory remain.
This Is called external fragmentation

14

()

external fragmentation

}sm

rt S6M

XM

()

% 6N

(c)

XM

14M

22M

(d)

20M

14M

18M

le)

external fragmentation

2

14M

1EM

4M

(1)

XM

A0
il

1EM

46

(g)

16

compaction

it Is a solution for external fragmentation

compaction shifts allocated blocks so they are
contiguous and all free memory is in one block

— In the general case compaction is unfeasible

— e.g. for C/C++ memory allocators: need for re-directing
all pointers
* but location of pointers is unknown!
« tracking and redirecting pointers is inefficient
« C/C++ are designed to be very very efficient

SO compaction Is never used, all dynamic allocation
systems stand with external fragmentation

17

Dynamic Partitioning Placement
Algorithm

« allocators must decide which free block to
allocate to an allocation request

« Best-fit algorithm

— Chooses the block that is closest Iin size to the
request

— Worst performer overall

« since smallest block is found for the request, the
smallest amount of fragmentation is left

— Memory compaction must be done more often

18

Dynamic Partitioning Placement

Algorithm
 First-fit algorithm
— Scans memory form the beginning and chooses
the first available block that is large enough
— Fastest

— May have many requestes loaded in the front end
of memory that must be searched over when
trying to find a free block

19

Dynamic Partitioning Placement

Algorithm
» Next-fit
— Scans memory from the location of the last
placement

— More often allocate a block of memory at the end
of memory where the largest block is found

— The largest block of memory Is broken up into
smaller blocks

— Compaction is required to obtain a large block at
the end of memory

20

examples

8M

12M
» allocation of a
220
block of 16MB
Last 1RM
allocated
block { 14K)
BM
aM
14M
JaM

(a) Before

8M
First Fit 12M
| .
6
Best Fit
| .
2M
BM
6M
Allecated hlock
Frea block
Pomsible new allocation ENLY
Mext Fit
>
20 M

(b) After

Buddy System

* simple but powerful allocator

* widely used in O.S. to allocate large chunks of
fixed size
- e.g. 4KB pages in many architectures (x86_32)
|t can be used as a base for a more
fine-grained allocator

— which Is called slab allocator in Linux and Solaris
and Is used for kernel data structures

22

Buddy System

« entire space available iIs treated as a single
block of 2Y

» arequest of s bytes returns a block of
cell(logs s) bytes
— If a request of size s such that 2-1<s <=2 a
block of length 2' is allocated
—a 2' block can be split into two equal buddies of
21 bytes
— for each request a “big” block is found and split

until the smallest block greater than or equal to s
IS generated

23

Buddy System

. It maintains a lists L. (/=1..U) of unallocated

blocks (holes) of size 2/
— splitting: remove a hole from L__splitit, and put
the two buddies it into L

— coalescing: remove two unallocated buddies from
L and putitinto L

24

1 Mbyte block
Request 100 K
Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

buddy system: example

1M
A=128K| 128K 256 K S12 K
A=128K| 128K B=256K S12 K
A=128K [c=aK6d K B=25%6K S12 K
A=128 K [c=aKsd K B=256K D=25 K 256 K
A=128 K [c=a1Kk/6d K 256 K D=25 K 256 K
128K [c=sK6d K 256 K D=25 K 256 K
E=128K [c=aK/6d K 256 K D=25 K 256 K
E=128K| 128K 256 K D=25 K 256 K
512K D=25 K 256 K
1M

Buddy System

procedure get_hole
— Input: / (precondition: i<U)

— output: a block c of size 2’'(postcondition: L; does

not contain c)
if (L, 1s empty)

b= get_hole(i+1);
< split b into two buddies b, and b_>
<putb andb, into L >

c= <first hole in L >

<remove ¢ form L,->
return c

26

buddy system: tree representation

256K %
128K %
" O

¥ ¥ ¥
A=128K c-a1x/64 K 256 K D=256 K 256 K

memory requirements for
processes

28

pointers In processes

Process control
information Entry point
to program
Branch
instroction
Increasing .
address pointers to
values functions
Reference
to data
linked data
structures
Current top
of stack

29

relocation for processes
(without hw support)

« when a program is loaded into memory the absolute
memory locations are determined

— different execution may lead to different locations

— memory references in the code must be
translated to actual physical memory address

 before run or on-the-fly
« on-the-fly relocation during execution
— swap out and swap In
— compaction of allocated partitions
* this kind of relocation Is part of the linking phase

30

protection

 processes should not be able to reference memory
locations in another process without permission

 references must be checked at run time

— Impossible to check memory references at compile time
(may directly depend on the input)

— exercise: given a generic input and program prove that
reference check is not computable! (reduce stopping
problem to it)

e memory protection requirement must be satisfied by the
processor (hardware) rather than the operating system
(software)

— Operating system cannot anticipate all of the memory
references a process will perform

31

sharing

» allow several processes to access the same
portion of memory

 petter to allow each process access to the
same copy of the program rather than have
their own separate copy

32

logical organization

programs are written in modules

— SW engineering reasons: divide the responsibility
for development, maintenance, testing, ecc

modules can be written and compiled
iIndependently

different degrees of protection given to
modules (read-only, execute-only)

share modules among processes

33

physical organization

 memory available for a program plus its data
may be insufficient

— overlaying allows various modules to be assigned
the same region of memory

« programmer does not know how much
memory will be available

34

addresses In the program

* Physical
— The absolute address or actual location in main memory
 Logical

— Reference to a location in a “logical” memory independent
of the current assignment of data to memory

— Translation must be made to the physical address by the
hardware (MMU)

« Relative (logical or physical)

— Address expressed as a location relative to some known
point

35

hardware support for relocation

« Base register
— Starting address for the process

« Bounds reqister
— Ending location of the process

* These values are set when the process Is
loaded or when the process Is swapped In

36

hardware support for relocation

Relative address

Base Register - -----———|-—====—-=————~
k.
. Adder
Ahsolute
addres
Bounds Register | Comparator |- — - - 5

Process image in
main memory

37

hardware support for relocation

The value of the base register is added to a
relative address to produce an absolute
address

he resulting address is compared with the
value in the bounds register

If the address Is not within bounds, an interrupt
IS generated to the operating system

If the address Is ok It IS used to access
memory

relocation is performed by setting appropriate
value In the registers &

Paging

 Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

« The chunks of a process are called pages and
chunks of memory are called frames

« Operating system maintains a page table for each

process
— Contains the frame location for each page in the
process

— Memory address consist of a page nhumber and
offset within the page

39

Assignment of Process Pages to Free
Frames

Frame

Main memory Main memory Main memory

number

0 0 A.0 0 A0

1 1 A.l 1 A.l

2 2 A.2 2 A.2

3 3 A.J 3 A3

4 4 4 SNBSS

5 5 5 %‘“ﬂi‘%‘i

6 6 6 b .2

T T T

B B B

9 9 9

10 10 10

11 11 11

12 12 12

13 13 13

14 14 14

(a) Fifteen Available Prames (b)) Load Process A (c) Load Process B

Assignment of Process Pages to Free

ol A b W ke D

b e
s Ll b = T

Main memory

A.0O
A.l
A2

A
NN
R R

A .2,
A

(d) Load Process C

= I = Y I LU

Frames

Main memory

A0

Al

A.2

A3

Y

W”W

(e) Swap out B

ol A b W ke D

b e
s Ll b = T

Main memory

A.0O

A.l

A2

A3

D

D.1

D.2

A C Y

W”W

Ill.t-‘l

() Load Process [

41

Page Tables

0 0 0| N 0| 7
1 1 1| N 1| &
2| 2 2| N 2. 9
L3 Process B JL10
Process A page table Process C
page table page table
0| 4 13
1 =] 14
% 6 Free frame
e list
Process D
page table

el i == D

- G = % A L

10
11
12
13
14

Main memory

A.D

Al

A2

Al

(BH]

.1

0.2
C.

77 ”W

I:I.f-l

(1) Load Process 1D
42

Segmentation

All segments of all programs do not have to
be of the same length

There Is a maximum segment length

Addressing consist of two parts - a segment
number and an offset

Since segments are not equal, segmentation
IS similar to dynamic partitioning

43

User process

paging vs. segmentation

Logical address = Logical address =
Relative address = 1507 Pﬂgﬂ# = I.,, Oftset =478 SE‘E;I“EI].‘.# = I., Oftset = 752
[0000010111011110| [000002j0111011110] [0001j001011110000]
/
S5
= E =
=" T
1
™ ~J
: . 2
4 - N
) = s E 4
B =
3
=1
L ¥ :
= EE \
| . —]
(a) Partitioning }% = (c) Segmentation
-
(b) Paging =

(page size = 1K)

logical to physical translation
paging

« 16-bit logical address .
< 6-hit page # P 10-hit offset

g

0|j0/j0|0)0(1)|0f1})1(21]0O0(21]1/1]|1)|0

b v - . —

0000101
#7 |000110
2011001

Process
page table

e ___,..‘-.._ " R N

0/0j0|1{1j0j0O]1]1]|1(0Of1|1]1

+#

16-hit physical address
(a) Paging

logical to physical translation
paging

« 16-bit logical address .
< 6-hit page # P 10-hit offset

g

0|j0/j0|0)0(1)|0f1})1(21]0O0(21]1/1]|1)|0

b v - . —

0000101
#7 |000110
2011001

Process
page table

e ___,..‘-.._ " R N

0/0j0|1{1j0j0O]1]1]|1(0Of1|1]1

+#

16-hit physical address
(a) Paging

logical to physical translation

segmentation
16-bit logical address
e >
4-bit segment # 12-hit offset
+ > >
0j0jOf1/0jO{1|/0]1|1f1|1|0[0/0]0O
—y ~ ~
Length Base
01001011102210j0000020000000000
— 1 (0111100111210 0020000000200000 I-é)
Process segment table
¥
— B,
0/|0(1{0|0jO0(1|1)|0O|0O[0O]|1|0O|O
+

16-bit physical address
(b) Segmentation

	Memory Management
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Fixed Partitioning
	Slide 11
	Slide 12
	Placement Algorithm with Partitions
	Slide 14
	Slide 15
	Slide 16
	Dynamic Partitioning
	Dynamic Partitioning Placement Algorithm
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Buddy System
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Relocation
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Addresses
	Slide 36
	Slide 37
	Slide 38
	Paging
	Assignment of Process Pages to Free Frames
	Slide 41
	Page Tables for Example
	Segmentation
	Slide 44
	Slide 45
	Slide 46
	Slide 47

