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memory management
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i summary

• goals and requirements

• techniques that do not involve virtual memory
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i memory management
• tracking used and free memory

• primitives
– allocation of a certain amount of memory

– de-allocation of what allocated, 
• it permits reuse of de-allocated memory

• reason for allocation request
– data structures (e.g. array, objects, ecc.)

• kernel data structures (allocator implemented in the 
kernel)

• process data structures (allocator implemented by 
language runtime libraries, e.g. C/C++ malloc)

– processes (within an O.S.)
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i summary and applicability
• many techniques and concepts in memory 

management equally apply to memory 
allocation for processes and for data
– fixed partitioning, dynamic compaction, 

fragmentation, placement algorithms, buddy 
system

– the book talks about a “process” but it may be any 
kind of allocation request

• hardware supported techniques apply only to 
processes
– virtual memory, paging, segmentation 
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i kinds of memory and allocators
physical memory managed by the kernel

kernel processes

kernel code

kernel data
structures

allocator for kernel 
data structures

allocator for 
processes

process process

…......heap

process code

malloc allocator

manage

m
anag

e

m
anag

e

heap

process code

malloc allocator
m

anag
e
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i allocators inventory

• in the processes

–  heap managed by malloc
• allocate data structures for the process

• in the kernel

– “sort of heap” managed by a “sort of malloc” in the kernel
• allocate data structures for the kernel

• remember that the kernel cannot use libraries!

• in linux this is provided by a buddy-system plus a “slab allocator”

– allocation of images of the processes
• for old OSes adopt the same approaches for data structures

• in modern OSes relies on paging and virtual memory
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i 

memory management 
techniques that do not involves 

virtual memory
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i Fixed Partitioning

• memory is partitioned in a fixed way

• equal size

• unequal size
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i Fixed Partitioning

inefficient memory use 
– any program, no matter how small, occupies an 

entire partition. 

• the fact that same space within a partition is 
wasted is called internal fragmentation.
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i Fixed Partitioning

• Equal-size partitions
– Any process or data whose size is less than or 

equal to the partition size can be loaded into an 
available partition

– If all partitions are full, the operating system can 
swap a process out of a partition

– A process/data may not fit in a partition.  
• For processes, the programmer must design the 

program with overlays

– still used in hard disk partitioning 
• LVM overcome such limitation (linux)
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i 

Placement Algorithm with 
Partitions

• Equal-size partitions
– Because all partitions are of equal size, it does 

not matter which partition is used
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i 

Placement Algorithm with 
Partitions

• Unequal-size partitions
– minimize internal 

fragmentation
• assign each process/data to 

the smallest partition it will 
fit into 

• one queue for each 
partition: a process might 
wait until it “best fit” partition 
is free, even if there are 
other partitions 
availableminimize wait time
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i 

Placement Algorithm with 
Partitions

• Unequal-size 
partitions
– minimize wait time 

and, secondarily, 
internal fragmentation

• one single queue

• request is assigned to 
the best partition 
available when served
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i dynamic partitioning 

• partitions are of variable length and number
• process/data is allocated exactly as much 

memory as required
• eventually, small holes in the memory remain. 

This is called external fragmentation
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i external fragmentation
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i external fragmentation
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i compaction

• it is a solution for external fragmentation 

• compaction shifts allocated blocks so they are 
contiguous and all free memory is in one block
– in the general case compaction is unfeasible 

– e.g. for C/C++ memory allocators: need for re-directing 
all pointers

• but location of pointers is unknown!

• tracking and redirecting pointers is inefficient

• C/C++ are designed to be very very efficient

• so compaction is never used, all dynamic allocation 
systems stand with external fragmentation
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i 

Dynamic Partitioning Placement 
Algorithm

• allocators must decide which free block to 
allocate to an allocation request

• Best-fit algorithm
– Chooses the block that is closest in size to the 

request
– Worst performer overall

• since smallest block is found for the request, the 
smallest amount of fragmentation is left

– Memory compaction must be done more often
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i 

Dynamic Partitioning Placement 
Algorithm

• First-fit algorithm
– Scans memory form the beginning and chooses 

the first available block that is large enough

– Fastest

– May have many requestes loaded in the front end 
of memory that must be searched over when 
trying to find a free block
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i 

Dynamic Partitioning Placement 
Algorithm

• Next-fit
– Scans memory from the location of the last 

placement
– More often allocate a block of memory at the end 

of memory where the largest block is found
– The largest block of memory is broken up into 

smaller blocks
– Compaction is required to obtain a large block at 

the end of memory
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i 

examples
• allocation of a 

block of 16MB 
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i Buddy System

● simple but powerful allocator
● widely used in O.S. to allocate large chunks of 

fixed size
– e.g. 4KB pages in many architectures (x86_32)

● it can be used as a base for a more 
fine-grained allocator

– which is called slab allocator in Linux and Solaris 
and is used for kernel data structures
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i 

• entire space available is treated as a single 
block of 2U

• a request of s bytes returns a block of 
ceil(log2 s) bytes

– if a request of size s such that 2i-1 < s <= 2i, a 
block of length 2i  is allocated

– a 2i  block can be split into two equal buddies of 
2i-1 bytes

– for each request a “big” block is found and split 
until the smallest block greater than or equal to s 
is generated

Buddy System
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i 

• it maintains a lists L
i
  (i=1..U) of unallocated 

blocks (holes) of size 2i

– splitting: remove a hole from L
i+1

 split it, and put 

the two buddies it into L
i

– coalescing: remove two unallocated buddies from 
L

i
 and put it into L

i+1

Buddy System
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i buddy system: example
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i procedure get_hole 

– input: i (precondition: i≤U)

– output:  a block c of size 2i (postcondition: Li does 
not contain c)

if ( L
i
 is empty )

b= get_hole(i+1);

< split b into two buddies b
1
 and b

2
>

< put b
1
 and b

2
 into L

i 
>

c= < first hole in L
i
>

<remove c form L
i
>

 return c

Buddy System
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i buddy system: tree representation
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i 

memory requirements for 
processes



29

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i pointers in processes

pointers to
functions

linked data 
structures
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i 

relocation for processes 
(without hw support)

• when a program is loaded into memory the absolute 
memory locations are determined

– different execution may lead to different locations

– memory references in the code must be 
translated to actual physical memory address

• before run or on-the-fly

•  on-the-fly relocation during execution 

– swap out and swap in

– compaction of allocated partitions

• this kind of relocation is part of the linking phase
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i protection
• processes should not be able to reference memory 

locations in another process without permission

• references must be checked at run time
– impossible to check memory references at compile time 

(may directly depend on the input)

– exercise: given a generic input and program prove that 
reference check is not computable! (reduce stopping 
problem to it) 

• memory protection requirement must be satisfied by the 
processor (hardware) rather than the operating system 
(software)
– Operating system cannot anticipate all of the memory 

references a process will perform
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i sharing

• allow several processes to access the same 
portion of memory

• better to allow each process access to the 
same copy of the program rather than have 
their own separate copy
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i logical organization

• programs are written in modules
– sw engineering reasons: divide the responsibility 

for development, maintenance, testing, ecc

• modules can be written and compiled 
independently

• different degrees of protection given to 
modules (read-only, execute-only)

• share modules among processes
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i physical organization

• memory available for a program plus its data 
may be insufficient
– overlaying allows various modules to be assigned 

the same region of memory

• programmer does not know how much 
memory will be available
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i addresses in the program

• Physical
– The absolute address or actual location in main memory

• Logical
– Reference to a location in a “logical” memory independent 

of the current assignment of data to memory

– Translation must be made to the physical address by the 
hardware (MMU)

• Relative (logical or physical)
– Address expressed as a location relative to some known 

point
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i hardware support for relocation

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is 
loaded or when the process is swapped in
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i 

hardware support for relocation
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i 

hardware support for relocation
• The value of the base register is added to a 

relative address to produce an absolute 
address

• The resulting address is compared with the 
value in the bounds register

• If the address is not within bounds, an interrupt 
is generated to the operating system

• If the address is ok it is used to access 
memory

• relocation is performed by setting appropriate 
value in the registers
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i Paging

• Partition memory into small equal fixed-size chunks 
and divide each process into the same size chunks

• The chunks of a process are called pages and 
chunks of memory are called frames

• Operating system maintains a page table for each 
process
– Contains the frame location for each page in the 

process
– Memory address consist of a page number and 

offset within the page
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i 

Assignment of Process Pages to Free 
Frames
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i 

Assignment of Process Pages to Free 
Frames
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i 

Page Tables 
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i Segmentation

• All segments of all programs do not have to 
be of the same length

• There is a maximum segment length

• Addressing consist of two parts - a segment 
number and an offset

• Since segments are not equal, segmentation 
is similar to dynamic partitioning
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i 

paging vs. segmentation
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i 

logical to physical translation
paging
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i 

logical to physical translation
paging
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i 

logical to physical translation
segmentation
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