
1

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

memory management

2

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i summary

• goals and requirements

• techniques that do not involve virtual memory

3

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i memory management
• tracking used and free memory

• primitives
– allocation of a certain amount of memory

– de-allocation of what allocated,
• it permits reuse of de-allocated memory

• reason for allocation request
– data structures (e.g. array, objects, ecc.)

• kernel data structures (allocator implemented in the
kernel)

• process data structures (allocator implemented by
language runtime libraries, e.g. C/C++ malloc)

– processes (within an O.S.)

4

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i summary and applicability
• many techniques and concepts in memory

management equally apply to memory
allocation for processes and for data
– fixed partitioning, dynamic compaction,

fragmentation, placement algorithms, buddy
system

– the book talks about a “process” but it may be any
kind of allocation request

• hardware supported techniques apply only to
processes
– virtual memory, paging, segmentation

5

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i kinds of memory and allocators
physical memory managed by the kernel

kernel processes

kernel code

kernel data
structures

allocator for kernel
data structures

allocator for
processes

process process

…......heap

process code

malloc allocator

manage

m
anag

e

m
anag

e

heap

process code

malloc allocator
m

anag
e

6

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i allocators inventory

• in the processes

– heap managed by malloc
• allocate data structures for the process

• in the kernel

– “sort of heap” managed by a “sort of malloc” in the kernel
• allocate data structures for the kernel

• remember that the kernel cannot use libraries!

• in linux this is provided by a buddy-system plus a “slab allocator”

– allocation of images of the processes
• for old OSes adopt the same approaches for data structures

• in modern OSes relies on paging and virtual memory

7

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

memory management
techniques that do not involves

virtual memory

8

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Fixed Partitioning

• memory is partitioned in a fixed way

• equal size

• unequal size

9

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Fixed Partitioning

inefficient memory use
– any program, no matter how small, occupies an

entire partition.

• the fact that same space within a partition is
wasted is called internal fragmentation.

10

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Fixed Partitioning

• Equal-size partitions
– Any process or data whose size is less than or

equal to the partition size can be loaded into an
available partition

– If all partitions are full, the operating system can
swap a process out of a partition

– A process/data may not fit in a partition.
• For processes, the programmer must design the

program with overlays

– still used in hard disk partitioning
• LVM overcome such limitation (linux)

11

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Placement Algorithm with
Partitions

• Equal-size partitions
– Because all partitions are of equal size, it does

not matter which partition is used

12

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Placement Algorithm with
Partitions

• Unequal-size partitions
– minimize internal

fragmentation
• assign each process/data to

the smallest partition it will
fit into

• one queue for each
partition: a process might
wait until it “best fit” partition
is free, even if there are
other partitions
availableminimize wait time

13

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Placement Algorithm with
Partitions

• Unequal-size
partitions
– minimize wait time

and, secondarily,
internal fragmentation

• one single queue

• request is assigned to
the best partition
available when served

14

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i dynamic partitioning

• partitions are of variable length and number
• process/data is allocated exactly as much

memory as required
• eventually, small holes in the memory remain.

This is called external fragmentation

15

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i external fragmentation

16

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i external fragmentation

17

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i compaction

• it is a solution for external fragmentation

• compaction shifts allocated blocks so they are
contiguous and all free memory is in one block
– in the general case compaction is unfeasible

– e.g. for C/C++ memory allocators: need for re-directing
all pointers

• but location of pointers is unknown!

• tracking and redirecting pointers is inefficient

• C/C++ are designed to be very very efficient

• so compaction is never used, all dynamic allocation
systems stand with external fragmentation

18

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Dynamic Partitioning Placement
Algorithm

• allocators must decide which free block to
allocate to an allocation request

• Best-fit algorithm
– Chooses the block that is closest in size to the

request
– Worst performer overall

• since smallest block is found for the request, the
smallest amount of fragmentation is left

– Memory compaction must be done more often

19

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Dynamic Partitioning Placement
Algorithm

• First-fit algorithm
– Scans memory form the beginning and chooses

the first available block that is large enough

– Fastest

– May have many requestes loaded in the front end
of memory that must be searched over when
trying to find a free block

20

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Dynamic Partitioning Placement
Algorithm

• Next-fit
– Scans memory from the location of the last

placement
– More often allocate a block of memory at the end

of memory where the largest block is found
– The largest block of memory is broken up into

smaller blocks
– Compaction is required to obtain a large block at

the end of memory

21

©
 2

0
0

4
 -

 2
0

0
8

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

examples
• allocation of a

block of 16MB

22

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Buddy System

● simple but powerful allocator
● widely used in O.S. to allocate large chunks of

fixed size
– e.g. 4KB pages in many architectures (x86_32)

● it can be used as a base for a more
fine-grained allocator

– which is called slab allocator in Linux and Solaris
and is used for kernel data structures

23

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

• entire space available is treated as a single
block of 2U

• a request of s bytes returns a block of
ceil(log2 s) bytes

– if a request of size s such that 2i-1 < s <= 2i, a
block of length 2i is allocated

– a 2i block can be split into two equal buddies of
2i-1 bytes

– for each request a “big” block is found and split
until the smallest block greater than or equal to s
is generated

Buddy System

24

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

• it maintains a lists L
i
 (i=1..U) of unallocated

blocks (holes) of size 2i

– splitting: remove a hole from L
i+1

 split it, and put

the two buddies it into L
i

– coalescing: remove two unallocated buddies from
L

i
 and put it into L

i+1

Buddy System

25

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i buddy system: example

26

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i procedure get_hole

– input: i (precondition: i≤U)

– output: a block c of size 2i (postcondition: Li does
not contain c)

if (L
i
 is empty)

b= get_hole(i+1);

< split b into two buddies b
1
 and b

2
>

< put b
1
 and b

2
 into L

i
>

c= < first hole in L
i
>

<remove c form L
i
>

 return c

Buddy System

27

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i buddy system: tree representation

28

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

memory requirements for
processes

29

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i pointers in processes

pointers to
functions

linked data
structures

30

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

relocation for processes
(without hw support)

• when a program is loaded into memory the absolute
memory locations are determined

– different execution may lead to different locations

– memory references in the code must be
translated to actual physical memory address

• before run or on-the-fly

• on-the-fly relocation during execution

– swap out and swap in

– compaction of allocated partitions

• this kind of relocation is part of the linking phase

31

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i protection
• processes should not be able to reference memory

locations in another process without permission

• references must be checked at run time
– impossible to check memory references at compile time

(may directly depend on the input)

– exercise: given a generic input and program prove that
reference check is not computable! (reduce stopping
problem to it)

• memory protection requirement must be satisfied by the
processor (hardware) rather than the operating system
(software)
– Operating system cannot anticipate all of the memory

references a process will perform

32

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i sharing

• allow several processes to access the same
portion of memory

• better to allow each process access to the
same copy of the program rather than have
their own separate copy

33

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i logical organization

• programs are written in modules
– sw engineering reasons: divide the responsibility

for development, maintenance, testing, ecc

• modules can be written and compiled
independently

• different degrees of protection given to
modules (read-only, execute-only)

• share modules among processes

34

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i physical organization

• memory available for a program plus its data
may be insufficient
– overlaying allows various modules to be assigned

the same region of memory

• programmer does not know how much
memory will be available

35

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i addresses in the program

• Physical
– The absolute address or actual location in main memory

• Logical
– Reference to a location in a “logical” memory independent

of the current assignment of data to memory

– Translation must be made to the physical address by the
hardware (MMU)

• Relative (logical or physical)
– Address expressed as a location relative to some known

point

36

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i hardware support for relocation

• Base register
– Starting address for the process

• Bounds register
– Ending location of the process

• These values are set when the process is
loaded or when the process is swapped in

37

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

hardware support for relocation

38

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

hardware support for relocation
• The value of the base register is added to a

relative address to produce an absolute
address

• The resulting address is compared with the
value in the bounds register

• If the address is not within bounds, an interrupt
is generated to the operating system

• If the address is ok it is used to access
memory

• relocation is performed by setting appropriate
value in the registers

39

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Paging

• Partition memory into small equal fixed-size chunks
and divide each process into the same size chunks

• The chunks of a process are called pages and
chunks of memory are called frames

• Operating system maintains a page table for each
process
– Contains the frame location for each page in the

process
– Memory address consist of a page number and

offset within the page

40

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Assignment of Process Pages to Free
Frames

41

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Assignment of Process Pages to Free
Frames

42

©
 2

0
0

4
 -

 2
0

0
8

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

Page Tables

43

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i Segmentation

• All segments of all programs do not have to
be of the same length

• There is a maximum segment length

• Addressing consist of two parts - a segment
number and an offset

• Since segments are not equal, segmentation
is similar to dynamic partitioning

44

©
 2

0
0

4
 -

 2
0

0
8

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

paging vs. segmentation

45

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

logical to physical translation
paging

46

©
 2

0
0

4
 -

 2
0

1
3

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

logical to physical translation
paging

47

©
 2

0
0

4
 -

 2
0

0
8

 w
ill

ia
m

 s
ta

lli
n

g
s,

 m
a

u
riz

io
 p

iz
zo

n
ia

 -
 s

is
te

m
i o

p
e

ra
tiv

i

logical to physical translation
segmentation

	Memory Management
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Fixed Partitioning
	Slide 11
	Slide 12
	Placement Algorithm with Partitions
	Slide 14
	Slide 15
	Slide 16
	Dynamic Partitioning
	Dynamic Partitioning Placement Algorithm
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Buddy System
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Relocation
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Addresses
	Slide 36
	Slide 37
	Slide 38
	Paging
	Assignment of Process Pages to Free Frames
	Slide 41
	Page Tables for Example
	Segmentation
	Slide 44
	Slide 45
	Slide 46
	Slide 47

