Uniprocessor Scheduling

LY

’-------.

types of scheduling in OS

Long-term scheduling The decision to add to the pool of processes to be executed

Medium-term scheduling The decision to add to the number of processes that are partially or
fullv in main memory

2
<

Short-term scheduling The decision as to which available process will be executed by the
pProcessor
/O scheduling The decision as to which process's pending I/O request shall be

handled by an available I'O device

.-------’

Long-Term Scheduling

« Determines which programs are admitted to
the system for processing

» Controls the degree of multiprogramming

* More processes, smaller percentage of time
each process Is executed

Not very common (crond, “planned activity”)

Medium-Term Scheduling

* process suspension

e based on the need to manage the degree of
multiprogramming

* the swapper

Short-Term (cpu) Scheduling

e a cpu scheduling policy decides for each cpu...
— which process should be executed among the ready
ones

- how long it will be executed

» the scheduler executes very frequently
- Invoked when an event occurs
e Timer interrupts (time quantum expired)
 system calls (blocking I/O operations)
o if policy Is preemptive: on I/O interrupts
- e.g. 200 times per second

o after the scheduler the dispatcher runs
— usually used as synonymous

process states

‘\?'5"
“2
e Sug
..n-"""---‘\ -h"'PEﬁd
- . & T b L
Activate i Dispatch ™~ _
Ready/ - . Release r
Suspend - Ready Running = Fxil
A Suspend Timeout
= =
1 E
=S =]
Activate e
Blocked/f
Suspend - Blocked

Suspend

scheduling and process state
transitions

f New

Long-term
Dp-Lern scheduling
scheduling
USPERC p fedium-term Short-term
scheduling stheduling

(e »(Blocked
PR pfedium-term
scheduling,

short term cpu scheduling

decision mode
* NoN-preemptive
— Once a process is in the running state, it will continue until
It terminates or blocks itself for 1/0
* preemptive
— currently running process may be interrupted

* better service since a process does not monopolize
the cpu

— can a process be preempted while running in
kernel mode?

» kernel preemptabllity: good kernels (especially real
time ones) are mostly preemptable

* in linux kernel preemtability for version >2.6, large
parts are still not preemtable

queue

Waiting line
(queue)
Arrivals

>

). = arrival rate

schduling
(or dispatching)
policy > Server

p -

w = waiting time

Departures

V

S = service time

(so far, at a given instant: e)

<

w + s = r = residence time
response time
turnaround time

1
S

A<

for cpu scheduling the server is the cpu

(statistically, always verified in an operating systems)

-

optimality criteria

User Oriented, Performance Related

Turnaround time This is the mterval of time between the submission of a process and its completion.
Includes actual execution time plus time spent waiting for resources, including the processor. This is an
appropriate measure for a batch job.

Response time For an interactive process, this is the time from the submission of a request until the

response begins to be received. Often a process can begin producing some output to the user while
continuing to process the request. Thus, this is a better measure than turnaround time from the user's point

of view_ The scheduling discipline should attempt to achieve low response time and to maximize the
mumber of interactive users recerving acceptable response time.

Deadlines When process completion deadlines can be specified, the scheduling discipline should
subordinate other goals to that of maximizing the percentage of deadlines met.

User Oriented, Other

Predictability A given job should rumn in about the same amount of time and at about the same cost
regardless of the load on the system. A wide variation in response time or turnaround time is distracting to
users. It may signal a wide swing in svstem workloads or the need for system tuning to cure instabilities.

11

optimality criteria

System Oriented, Performance Related

Throughput The scheduling policy should attempt to maximize the number of processes completed
per unit of time. This is a measure of how much work is bemng performed. This clearly depends on the
average length of a process but is also influenced by the scheduling policy, which may affect unlization.

Processor utilization This is the percentage of time that the processor is busv. For an expensive shared
systemn, this is a significant criterion. In single-user systems and i some other svstems, such as real-time
systems, this criterion 15 less important than some of the others.

System Oriented, Other

Fairness In the absence of gmdance from the user or other svstem-supplied guidance, processes should
be treated the same, and no process should suffer starvation.

Enforcing priorities When processes are assigned priorities, the scheduling policy should favor
higher-priority processes.

Balancing resources The scheduling policy should keep the resources of the system busy. Processes
that will underutilize stressed resources should be favored. This criterion also mvolves medmm-term and
long-term scheduling.

12

optimality criteria
e Cpu bound processes

- tend do monopolize the cpu making other
processes to starve

— unfair with respect to other processes concerning
Cpu usage
 |/O bound processes...

- do not need very much cpu

- quickly provide something to do for other devices

* when other devices run parallelism (and hence,
throughput and response time) is improved

* cpu scheduler should prefer I/O bound vs.
cpu bound processes

13

scheduling queuing diagram

Release

Long-term Time-out
scheduling
L}
L}
Batch] Ready Queue Short-term
jobs * - scheduling eeor
iy
Medium-term

Interactive
USers

Event
Occurs

Tl

i Ready, Suspend Queue
i - %
g

' scheduling

—all——————— b

-
»
N

J"lr'IE::Iium-term

scheduling
Block ed, Suspend Queue o
-7
Blocked Queue
Event Wait
-t

14

Priorities

a priority Is assigned to each process
a ready process queue for each priority

Scheduler will always choose a process of
higher priority over one of lower priority

Lower-priority may suffer starvation

— Allow a process to change its priority based on
Its age or execution history

preemption may be based on priority

15

priority queuing and preemption

RQO Release
Dispatch -
— l Processor
RO1
S Em—
Admit — ™
RQn
—— -
Preemption
-~}
Event Wait
i
Event
OCCUrS Blocked Queue

16

Process Scheduling Example

Process Arrival Time Service Time
A 0 3
B 2 6
C 4 4
D 6 5
E 8 2

 arrival time: when the process enter the
ready queue

» service time: the process virtual time elapsed
till the next blocking operation

First-Come-First-Served (FCFS)

* A short process may have to wait a very
long time before it can execute
« Favors CPU-bound processes

- 1/O processes have to wait until CPU-bound
process completes

18

s
g
ol
.m,.jﬁd_..ﬁ?_
£
a1]
(¥]
s
8
[
ﬂﬂ_?_d.ﬁ_nﬁ
'll
)=
=
-
[P}
A
faF]
l<|m|lLU|A|H
=
-

First-Come-Firs

t-Served
(FCFS)

10

—4 - - — — — —
b= L Ry I

« When the current process ceases to

execute, the oldest process in the
Ready queue Is selected (non

preemptive)

19

Round-Robin

» Clock interrupt is generated at periodic
Intervals

 When an interrupt occurs, the currently
running process is placed in the read queue
(preemption based on timer)

— Next ready job Is selected
* a.k.a. time slicing

20

Round-Robin
(RR), g=1

mDnmE &

0

Process Arrival Time Service Time
A 0 3
B 2 6
C 4 4
D 6 5
E g 2

b
|
|
|
|
|
|
|
|

— o —

preemption based on a timer
e time quantum qg: each process is

allowed to use the processor for the

time quantum and then preempted

JAN

the book

RR and queues

blocked ‘ ready ‘

e ‘ > > ‘
e round ‘

T robin

interactive | time quantum expired ‘

event | ‘

response time

22

effect of quantum on response time

Time

Process allocated Interaction
Hme quanium complete

S

Pt
Response hme q-r
r

-+ 4
Quanium

iy

23

effect of quantum on response time

Time
L
Process allocated Process Process allocated Interaction
lime quanium preampied hme quantum complete
| IS SSS LSS SIS ISIITS |
+ - -
g Other processes run
4 L

r

(b} Time quantum less than typical interaction

unfairness of RR

* |/O-bound processes usually release cpu
before expiration of their qguantum

e cpu-bound processes run for the whole
guantum

* RR prefers cpu-bound processes
« we would like to prefer i/o-bound processes!

25

Shortest Process — 1+ % T 55—
Next (SPN, SJF) ———F——1—
0 5 10 15 20 -
I NS R s [S B
gl

* process with shortest expected processing time is selected
next (expected processing time to the next blocking i/o
operation)

* need to know future! approximated.

e non-preemptive policy optimal w.r.t. minimum total waiting
time

Shortest Process Next

» Predictability of longer processes is reduced
« Possibility of starvation for longer processes

e exstimation of time length of the next
cpu-bust may be done by exponential
averaging

Sn—l—lzaTn_'_(l_a)Sn
ac(0,1]

27

S h O r teS t Pm:ess Arrivaﬂl Time Sen'ic: Time
Remaining c ; ;
Time (SRT) : ; ;

0 3 10 15 20
S Y A
P o N T O S B A A
By S e Co
Cll o
I::'I | | | | | " | | I | | | |

T T T R U B R A

* Preemptive version of shortest
process next policy

* Must estimate processing time

feedback

Admit —
 does notneed T g
service time
estimation ko!
* preemptive as in
RR reeeeeee L
» demotes I

processes at each

Processor

expired time
guantum into
lower priority
gueues

Figure 9.10 Feedback Scheduling

Release

Release

29

Service Time

[|

Arrival Time

|

Process

Feedback

20

10

Feedback

1

30

AN feedback: varianti

the book

* UNn processo scala di priorita’...

- sempre quando scade il suo quanto di tempo
oppure

- gquando scade il quanto e c'e almeno una altro
processo nel sistema (Stallings)

31

AN feedback: varianti

the book

e UN processo aumenta di priorita' quando va in
blocco...

— aumento fisso ogni volta che va in blocco
oppure
- aumento dipende dal tempo speso in blocco

32

A linux scheduling policies

in kernel 2.6
e conventional processes

- FB with preemption (also in kernel mode)
- “estimation” of the cpu-burst

- dynamically set higher priority for processes with shorter
cpu-burst

— user defined parameter (command: nice)
* real time processes

- FCFS
- RR (user defined time quantum)
— priorities and preemption

33

	Uniprocessor Scheduling
	Slide 2
	Long-Term Scheduling
	Medium-Term Scheduling
	Short-Term Scheduling
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Priorities
	Slide 16
	Process Scheduling Example
	Slide 18
	First-Come-First-Served (FCFS)
	Slide 20
	Round-Robin
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Shortest Process Next
	Slide 27
	Shortest Remaining Time
	Slide 29
	Feedback
	Slide 31
	Slide 32
	Slide 33

