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ABSTRACT

In this paper we study the planar graphs that admit an acyclic 3-coloring. We show that test-
ing acyclic 3-colorability is NP-hard, even for planar graphs of maximum degree 4, and we
show that there exist infinite classes of cubic planar graphs that are not acyclically 3-colorable.
Further, we show that every planar graph has a subdivision with one vertex per edge that ad-
mits an acyclic 3-coloring. Finally, we show that every series-parallel graph admits an acyclic
3-coloring and we give a linear-time algorithm for recognizing whether every 3-coloring of a
series-parallel graph is acyclic.
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1 Introduction
A coloring of a graph is an assignment of colors to the vertices such that no two adjacent vertices
have the same color. A k-coloring is a coloring using k colors. Planar graph colorings have been
widely studied from both a combinatorial and an algorithmic point of view. The existence of a
4-coloring for every planar graph, proved by Appel and Haken [3, 4], is one of the most famous
results in Graph Theory. A quadratic-time algorithm is known to compute a 4-coloring of any
planar graph [14].

An acyclic coloring is a coloring with no bichromatic cycle. An acyclic k-coloring is an
acyclic coloring using k colors. Acyclic colorings have been deeply investigated in the liter-
ature. From an algorithmic point of view, Kostochka proved in [11] that deciding whether a
graph admits an acyclic 3-coloring is NP-hard. From a combinatorial point of view, the most
interesting result is perhaps the one proved by Alon et al. in [2], namely that every graph with
degree ∆ can be acyclically colored with O(∆4/3) colors, while there exist graphs requiring
Ω(∆4/3/ 3

√
log ∆) colors in any acyclic coloring.

Acyclic colorings of planar graphs have been first considered in 1973 by Grünbaum, who
proved in [9] that there exist planar graphs requiring 5 colors in any acyclic coloring. Moreover,
the same lower bound holds even for 3-degenerate bipartite planar graphs [12]. Grünbaum
conjectured that such a bound is tight and proved that 9 colors suffice for constructing such a
coloring. The Grünbaum upper bound was improved down to 8 [13], to 7 [1], to 6 [10], and
finally to 5 by Borodin [5].

Since there exist planar graphs requiring 5 colors in any acyclic coloring, it is natural to study
which planar graphs can be acyclically 3- or 4-colored. In this paper we study the acyclically
3-colorable planar graphs, from both an algorithmic and a combinatorial perspective. We show
the following results:

• In Sect. 3 we prove that deciding whether a planar graph has an acyclic 3-coloring is an
NP-hard problem, even when restricted to planar graphs of degree 4. An NP-hardness
proof for deciding acyclic 3-colorability was only known for non-planar graphs of un-
bounded degree [11], as far as we know. The NP-hardness result is not surprising, since
an analogous result is known for deciding (possibly non-acyclic) 3-colorability of planar
graphs of degree 4 [8]. However, we show an interesting difference between the class
of 3-colorable planar graphs and the class of acyclically 3-colorable planar graphs, by
exhibiting an infinite number of cubic planar graphs not admitting any acyclic 3-coloring
(while K4 is the only cubic graph that can not be 3-colored [7]). We remark that it is
known how to construct acyclic 4-colorings of every cubic (even non-planar) graph [15].

• In Sect. 4 we prove that every planar graph has a subdivision with one vertex per edge that
is acyclically 3-colorable. Such a result complements the observation that every planar
graph has a subdivision with one vertex per edge that is 2-colorable. Acyclic colorings
of graph subdivisions have been already considered by Wood in [17], where the author
observed that every graph has a subdivision with two vertices per edge that is acyclically
3-colorable.

• In Sect. 5 we prove that every series-parallel graph has an acyclic 3-coloring, thus improv-
ing the result of Grünbaum [9] that every outerplanar graph has an acyclic 3-coloring.
Further, we consider the problem of determining the planar graphs such that every 3-
coloring is acyclic. Such a problem has been introduced by Grünbaum [9], who showed
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that every 3-coloring of a maximal outerplanar graph is acyclic. We improve his result
by characterizing the series-parallel graphs such that every 3-coloring is acyclic and by
providing a linear-time recognition algorithm.

2 Preliminaries
A graph G is k-connected if removing any k-1 vertices leaves G connected; 3-connected and
2-connected graphs are called triconnected and biconnected graphs, respectively. The degree of
a vertex is the number of incident edges. The degree of a graph is the maximum degree of one
of its vertices. In a cubic graph (resp. a subcubic graph) each vertex has degree exactly 3 (resp.
at most 3). A subdivision of a graph G is obtained by replacing each edge of G with a path. A
k-subdivision of G is a subdivision of G in which any path replacing an edge of G has at most
k internal vertices. The internal (extremal) vertices of the paths replacing the edges of G are
called subdivision vertices (resp. main vertices).

A planar graph is a graph containing no K5-minor and no K3,3-minor. A planar graph is
maximal when all its faces are delimited by 3-cycles.

An outerplanar graph is a graph that admits a planar drawing in which all the vertices are
incident to the outer face. Combinatorially, an outerplanar graph is a graph containing no K4-
minor and no K2,3-minor. An outerplanar graph is maximal if all its internal faces are delimited
by 3-cycles.

A series-parallel graph (SP-graph for short) is a graph containing no K4-minor. SP-graphs
are inductively defined as follows. An edge (u, v) is a SP-graph with poles u and v. Denote by
ui and vi the poles of a SP-graph graph Gi. A series composition of a sequence G0, G1, . . . , Gk

of SP-graphs, with k ≥ 1, is a SP-graph with poles u=u0 and v=vk, containing graphs Gi

as subgraphs, and such that vi and ui+1 have been identified, for each i=0, 1, . . . , k − 1. A
parallel composition of a set G0, G1, . . . , Gk of SP-graphs, with k ≥ 1, is a SP-graph with
poles u=u0=u1=. . .=uk and v=v0=v1=. . .=vk and containing graphs Gi as subgraphs. The SPQ-
tree T of a SP-graph G is the tree, rooted at any node, representing the series and parallel
compositions of G.

3 Deciding the Acyclic 3-Colorability of Planar Graphs
In this section we study the problem of deciding whether a given planar graph admits an acyclic
3-coloring. We have the following:

Theorem 1 Planar Graph Acyclic 3-Colorability is NP-complete.

Proof: The problem is clearly in NP . In order to show the NP-hardness, we perform
a reduction from Planar Graph 3-Colorability. Consider the graph G9 shown in Fig. 1.a. We
claim that any acyclic 3-coloring of G9 satisfies the following properties: (P1) u1 and u2 have
different colors; (P2) every path connecting u1 and u2 contains vertices of all the three colors.

We prove the claim. Assume c(u1)=c0. Since v1 and v2 are adjacent to u1, either c(v1)=c(v2)=c1,
or c(v1)=c1 and c(v2)=c2. Suppose that c(v1)=c(v2)=c1. Then, c(v3)=c2, since c(v3)6=c0 (other-
wise cycle (u1, v1, v3, v2, u1) would be bichromatic) and c(v3) 6=c1 (v3 is adjacent to v1). Further,
c(v4)=c0 (v4 is adjacent to v2 and v3) and c(v5)=c1 (v5 is adjacent to v3 and v4). Then, there is
no possible coloring for v6. In fact, c(v6) 6=c0 (otherwise cycle (u1, v2, v4, v5, v6, v1, u1) would
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Figure 1: (a) Graph G9 and its unique acyclic 3-coloring, up to a switch of the color classes. (b)
A planar graph G. (c) The planar graph G′ obtained by replacing each edge of G with a copy of
G9.

be bichromatic), c(v6)6=c1 (v6 is adjacent to v5), c(v6)6=c2 (otherwise cycle (v1, v3, v5, v6, v1)
would be bichromatic). Hence, in any acyclic 3-coloring of G9, c(v1)=c1 and c(v2)=c2. Then,
c(v3)=c0 (v3 is adjacent to v1 and v2), c(v4)=c1 (v4 is adjacent to v2 and v3), c(v5)=c2 (v5 is
adjacent to v3 and v4), c(v6)=c0 (v6 is adjacent to v1 and v5), and c(v7)=c2 (v7 is adjacent to v1

and v6). Finally, c(u2)=c1, since c(u2)6=c0 (otherwise cycle (u2, v7, v6, v5, v3, v2, u2) would be
bichromatic) and c(u2)6=c2 (u2 is adjacent to v2). Hence, G9 has only one acyclic 3-coloring
(up to a switch of the color classes), which satisfies properties P1 and P2.

We reduce Planar Graph 3-Colorability to Planar Graph Acyclic 3-Colorability. Let G be
an instance of Planar Graph 3-Colorability (see Fig. 1.b). Replace each edge (u, v) of G with a
copy of G9, by identifying vertices u and v with u1 and u2, respectively (see Fig. 1.c). Let G′

be the resulting planar graph. We show that G admits a 3-coloring if and only if G′ admits an
acyclic 3-coloring.

First, suppose that G admits a 3-coloring. For each edge (u, v) of G, let c0 and c1 be the
colors of u and v, respectively. Color the corresponding graph G9 by assigning color c0 to
u1, color c1 to u2, and by completing the unique acyclic 3-coloring of G9 with c0 and c1. We
show that the resulting coloring of G′ is acyclic. Assume, for a contradiction, that G′ contains a
bichromatic cycle C. Such a cycle is not entirely contained inside a graph G9 replacing an edge
of G in G′ (in fact, the 3-coloring of each graph G9 is acyclic). Hence, C contains vertices of
more than one graph G9. This implies that C contains as a subgraph a simple path connecting
vertices u1 and u2 of a graph G9. However, by property P2 of the G9’s coloring, such a path
contains vertices of all the three colors, a contradiction.

Second, suppose that G′ admits an acyclic 3-coloring. A coloring of G is obtained from
the acyclic 3-coloring of G′ by assigning to each vertex u of G the color of the corresponding
vertex u1 of G′. By property P1, each edge of G connects two vertices of distinct colors. ¤

Next, we show that the problem of testing whether a planar graph admits an acyclic 3-
coloring remains NP-hard even when restricted to planar graphs of maximum degree 4.

Theorem 2 Degree-4 Planar Graph Acyclic 3-Colorability is NP-complete.

Proof: The problem is clearly in NP . In order to show the NP-hardness, we perform a
reduction from Planar Graph Acyclic 3-Colorability. Consider the family of graphs Hi defined
as follows. H1 is shown in Fig. 2.a. Hi is obtained from a copy of Hi−1 and a copy of H1 by
renaming vertices u1, v1, and w1 of H1 with labels ui, vi, and wi, respectively, and by identifying
vertex wi−1 of Hi−1 and vertex ui of H1. H3 is shown in Fig. 2.b. Vertices uj , vj , and wj of Hi,
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for 1 ≤ j ≤ i, are the outlets of Hi. The family of graphs Hi has been defined in [8] in order to
perform a reduction from Planar Graph Colorability to Degree-4 Planar Graph Colorability.
We claim that Hi satisfies the following properties: (P0) Hi admits an acyclic 3-coloring; (P1)
in any acyclic 3-coloring of Hi, the outlets have the same color; (P2) in any acyclic 3-coloring of
Hi, for any two outlets xj and yk of Hi, there exist two bichromatic paths connecting xj and yk,
one with colors c0 and c1, and one with colors c0 and c2, respectively, where x, y ∈ {u, v, w},
j, k ∈ {1, 2, . . . , i}, and c0 is the color of the outlets.

u w

v1

1 1 u1

v1 v2 v3

w3w2=u3=u2w1

(a) (b)
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Figure 2: (a) Graph H1. (b) Graph H3. (c) A planar graph G. (d) Graph G′ obtained by
replacing each degree-d vertex z of G with a copy H(z) of Hd. For each graph H(z), only its
outlets are shown.

We prove the claim. A property stronger than P1 was proved in [8], where in fact it is shown
that in any 3-coloring of Hi the outlets have the same color. We prove P0 and P2 by induction
on i. P0 and P2 are easily verified in H1, namely Fig. 2.a shows the unique acyclic 3-coloring
of H1, up to a switch of the color classes. Suppose that P0 is verified in Hi−1. Every cycle of
Hi entirely belongs either to Hi−1 or to the copy of H1 that is added to Hi−1 to form Hi. In both
cases the cycle is not bichromatic, by induction. Suppose that P2 is verified in Hi−1. Consider
any two outlets xj and yk of Hi. If xj, yk /∈ {vi, wi} (if xj, yk ∈ {vi, wi}), by induction xj

and yk are connected by two bichromatic paths with colors c0 and c1, and with colors c0 and c2,
respectively. If xj /∈ {vi, wi} and yk ∈ {vi, wi}, xj and yk are connected by a bichromatic path
with colors c0 and c1 (resp. c0 and c2), obtained as the union of a bichromatic path with colors
c0 and c1 (resp. c0 and c2) between xj and ui and a bichromatic path with colors c0 and c1 (resp.
c0 and c2) between ui and yk. All such paths exist by induction.

We reduce Planar Graph Acyclic 3-Colorability to Degree-4 Planar Graph Acyclic 3-Colorability.
Let G be any instance of Planar Graph Acyclic 3-Colorability (Fig. 2.c). For each vertex z of
G with d neighbors z1, z2, . . . , zd, delete z and its incident edges from G, introduce a copy of
H(z)=Hd, and add an edge between outlet vj of H(z) and zj , for each j=1, 2, . . . , d (Fig. 2.d).
We show that the resulting planar graph G′ of degree 4 admits an acyclic 3-coloring if and only
if G′ admits an acyclic 3-coloring.
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Suppose that G admits an acyclic 3-coloring. Color the outlets zj corresponding to each
vertex z of G with the color of z. By properties P0 and P1, the coloring of each H(z) can be
completed to an acyclic 3-coloring. Any cycle C ′ of G′ either is entirely contained in a graph
H(z) (hence C ′ is not bichromatic), or contains vertices of several graphs H(z). In the latter
case, partition the vertices of C ′ into sets V1, V2, . . . , Vk, where each Vj is a maximal sequence of
consecutive vertices of C ′ belonging to the same graph H(z). Suppose, for a contradiction, that
C ′ is bichromatic. Consider the (possibly non-simple) cycle C of G containing a vertex z if C ′
passes through vertices of H(z), and containing an edge (z1, z2) if C ′ contains an edge between
a vertex of H(z1) and a vertex of H(z2). If C contains vertices of three colors, then C ′ contains
vertices of three colors since, for each vertex z of G, the outlets of H(z) have the same color
of z. However, C ′ is supposed to be bichromatic, hence C is bichromatic, as well, contradicting
the assumption that the coloring of G is acyclic.

Suppose that G′ admits an acyclic 3-coloring. Color G by assigning to each vertex z the
color of the outlets of H(z) (by P1, all such outlets have the same color). Suppose that G
contains a bichromatic cycle C with colors c0 and c1. A bichromatic cycle C ′ in G′ is found as
follows: Replace each vertex z1 of C with a path with colors c0 and c1 connecting the outlets of
H(z1) adjacent to the outlets of H(z2) and H(z3), where z2 and z3 are the neighbors of z1 in
C. Such a path exists by Property P2. Then, C ′ is a bichromatic cycle in G′, contradicting the
assumption that the coloring of G′ is acyclic. ¤

Now we show infinite classes of cubic planar graphs not admitting any acyclic 3-coloring.
Such a result is based on the following lemmata. The proof of Lemma 2 is analogous to the
proof of Lemma 1. Denote by K2,3 the complete bipartite graph whose vertex sets V A

2,3 and V B
2,3

have two and three vertices, respectively. Denote by K1,1,2 the complete tripartite graph whose
vertex sets V A

1,1,2, V B
1,1,2, and V C

1,1,2 have one, one, and two vertices, respectively.

Lemma 1 Let G be a graph having a vertex z of degree 2 adjacent to two vertices u and v. Let
G′ be the graph obtained by substituting z with a copy of K2,3, where a vertex uB

2,3 of V B
2,3 is

connected to u and a vertex vB
2,3 6=uB

2,3 of V B
2,3 is connected to v (see Fig. 3.a and Fig. 3.b). Then

G′ has an acyclic 3-coloring if and only if G has an acyclic 3-coloring.

Proof: Suppose that G has an acyclic 3-coloring. Color each vertex of G′ not in K2,3 as in
G, the vertices in V B

2,3 with c(z), and the vertices in V A
2,3 with the two colors different from c(z).

Every cycle C ′ in G′ not passing through the vertices of K2,3 is also a cycle in G (hence it is not
bichromatic). Every cycle C ′ in G′ passing through vertices of K2,3 contains a path P ′ from u
to v whose vertices belong to K2,3. Suppose, for a contradiction, that C ′ is bichromatic. Path P ′
contains a vertex in V B

2,3 with color c(z). The cycle C of G obtained by replacing P ′ with path
(u, z, v) in C ′ is bichromatic, a contradiction.

Now suppose that G′ has an acyclic 3-coloring. In any acyclic coloring of K2,3, the three
vertices in V B

2,3 have the same color c0. Color each vertex of G different from z as in G′ and
color z with c0. Every cycle C in G that does not pass through z is also a cycle in G′ (hence it is
not bichromatic). Every cycle C in G that passes through z contains path (u, v, z). Suppose, for
a contradiction, that all the vertices of C have colors c0 and c1. For each color ci, with i ∈ {1, 2},
there exists a path Pi connecting u and v and whose vertices belong to K2,3 and have colors c0

and ci. The cycle C ′ of G′ obtained by replacing (u, z, v) with path P1 in C is bichromatic, a
contradiction. ¤

Lemma 2 Let G be a graph having a vertex z of degree 2 adjacent to two vertices u and v. Let
G′ be the graph obtained by substituting z with a copy of K1,1,2, where a vertex uC

1,1,2 of V C
1,1,2
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is connected to u and a vertex vC
1,1,2 6=uC

1,1,2 of V C
1,1,2 is connected to v (see Fig. 3.a and Fig. 3.c).

Then G′ has an acyclic 3-coloring if and only if G has an acyclic 3-coloring.

(a) (b) (c)

(d) (e) (f) (g) (h) (i)

Figure 3: (a) and (b) Replacement of a degree-2 vertex with a K2,3. (a) and (c) Replacement of
a degree-2 vertex with a K1,1,2. (d) G5. (e) G9. (f) G13. (g) G+

5 . (h) G+
9 . (i) G+

13.

Graph G5 (Fig. 3.d) has no acyclic 3-coloring and has a vertex of degree 2. For every i > 0,
replace the vertex of degree 2 of graph G4i+1 with a copy of K2,3, obtaining a graph G4i+5 that
has a vertex of degree 2 and, by Lemma 1, is not acyclically 3-colorable. Figs. 3.e–f show G9

and G13. Replacing the vertex of degree 2 of G4i+1 with a copy of K1,1,2 yields a graph G+
4i+1

that, by Lemma 2, is not acyclically 3-colorable. Figs. 3.g–i show graphs G+
5 , G+

9 , G+
13. Graphs

G+
4i+1 are cubic, for every i > 0.

4 Acyclic 3-Colorings of Planar Graph Subdivisions
In this section we prove the following theorem.

Theorem 3 Every planar graph has a 1-subdivision that admits an acyclic 3-coloring.

Proof: It suffices to prove the statement for maximal planar graphs. In fact, suppose that
the statement holds for maximal planar graphs. Let G be a planar graph. Augment G to a
maximal planar graph G′ by adding dummy edges. Then G′ has a 1-subdivision G′

s that has an
acyclic 3-coloring c. Remove the edges of G′

s corresponding to subdivided dummy edges of G′,
obtaining a planar graph Gs that is a subdivision of G. Since every cycle of Gs is also a cycle
of G′

s, c is an acyclic 3-coloring of Gs.
Consider a planar drawing of any maximal planar graph G. Let Gs be the planar graph

obtained by subdividing each edge of G with one subdivision vertex. Partition the vertices of
G into disjoint sets V 0, V 1, . . . , V k as follows. Let G0=G; till there are vertices in Gi, denote
by V i the main vertices incident to the outer face of Gi; remove the vertices in V i and their
incident edges from Gi obtaining a graph Gi+1. Notice that the vertices in each set V i induce
an outerplanar subgraph of G. Further, each edge of G is either incident to two vertices in the
same set V i or to two vertices in sets V i and V i+1, for some i ∈ {0, 1, . . . , k − 1}.

Color the main vertices in V i with color cj(i), where j(i) ∈ {0, 1, 2} and j(i) ≡ i mod 3.
Color each subdivision vertex adjacent to a vertex in a set V i and to a vertex in V i+1 with
color cj(i+2). See Fig. 4.a. It remains to color each subdivision vertex adjacent to two vertices
belonging to the same set V i. Consider the outerplanar subgraph Oi of G induced by the vertices
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in V i. Augment Oi to maximal by adding dummy edges. See Fig. 4.b. Let Oi
s be the plane graph

obtained by subdividing each edge of Oi with one subdivision vertex. Each subdivision vertex
of Gs adjacent to two vertices belonging to the same set V i, for some i ∈ {1, 2, . . . , k}, is
also a subdivision vertex of Oi

s. Hence, a coloring of the subdivision vertices of Oi
s determines

a coloring of each subdivision vertex of Gs adjacent to two vertices in the same set V i. We
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Figure 4: (a) Coloring the main vertices and the subdivision vertices of Gs adjacent to a vertex
in a set V i and to a vertex in V i+1. Thick edges connect vertices of G in the same set V i. (b)
Subgraph O2 of G augmented to maximal. (c)–(d) Coloring O2

s at step x and at step x + 1 of
the algorithm. Not yet colored subdivision vertices of O2

s are not shown.

show how to color the subdivision vertices of Oi
s. The algorithm already chose to color the

main vertices of Oi
s with color cj(i). Since Oi is maximal, every internal face of Oi

s has three
subdivision vertices. The coloring algorithm exploits several steps. At the first step, consider
any internal face f ∗ of Oi

s. Color two of its subdivision vertices with color cj(i+1) and the third
one with cj(i+2). At the x-th step, with x ≥ 2, suppose that the subgraph Oi,x

s of Oi
s induced by

the colored subdivision vertices and by their neighbors is biconnected. See Fig. 4.c. Consider
any internal face of Oi

s of which one subdivision vertex has already been colored. Color the
other two subdivision vertices incident to the face, one with color cj(i+1) and the other one with
cj(i+2). See Fig. 4.d.

We show that the resulting coloring of Gs is acyclic. Suppose, for a contradiction, that a
bichromatic cycle C exists. If C contains main vertices in two distinct sets V i and V i+1, then C
contains two edges (vp, vs) and (vs, vq), where vp and vq are main vertices in V i and V i+1, re-
spectively, and vs is a subdivision vertex. However, c(vp)=cj(i), c(vq)=cj(i+1), and c(vs)=cj(i+2),
hence C is not bichromatic, a contradiction. Otherwise, C only contains main vertices in the
same set V i. Then, C is also a cycle of Oi

s. We show by induction that the described coloring
of Oi

s is acyclic. The coloring of f ∗ is acyclic. Suppose that, after a certain step of the coloring
algorithm for the vertices of Oi

s, the subgraph Oi,x
s of Oi

s induced by the colored subdivision
vertices and by their neighbors is acyclic. When a new face is considered and two subdivision
vertices v1 and v2 are colored, with c(v1)=cj(i+1) and c(v2)=cj(i+2), every cycle either entirely
belongs to Oi,x

s , hence by induction it is not bichromatic, or passes through v1, v2, and their
common neighbor, hence it is not bichromatic, a contradiction. ¤

5 Acyclic 3-Colorings of Series-Parallel Graphs
In this section we consider acyclic 3-colorings of SP-graphs. First, we show that every SP-graph
admits an acyclic 3-coloring.
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Theorem 4 Every SP-graph G with poles u and v admits an acyclic 3-coloring such that
c(u)6=c(v) and every path connecting u and v, except for edge (u, v), contains a vertex w
with c(w)6=c(u), c(v).

Proof: We prove the statement by induction on the number n of vertices. Case n=2 is
trivial. Suppose n > 2 and distinguish two cases: (Case 1) G is a series composition of SP-
graphs G0, G1 · · · , Gk, such that Gi has poles ui and vi, with u0=u, vi=ui+1, and vk=v; (Case 2)
G is a parallel composition of SP-graphs G0, G1 · · · , Gk with poles u and v.

In Case 1, apply induction to construct an acyclic 3-coloring of Gi with colors c0, c1, and
c2 such that c(ui)=cj(i) and c(vi)=cj(i+1), for each i=0, 1, . . . , k − 1, where j(i) ∈ {0, 1, 2} and
j(i) ≡ i mod 3. Further, apply induction to construct an acyclic 3-coloring of Gk with colors c0,
c1, and c2 such that c(uk)=cj(k), and such that c(vk)=c1, if c(uk)=c0 or c(uk)=c2, and c(vk)=c2,
if c(uk)=c1. By construction, c(u0=u)=c0, c(u1)=c1, c(u2)=c2, and every path connecting u and
v passes through u0, u1, and u2, hence it is not bichromatic. Further, any simple cycle in G is
also a cycle in a component Gi hence, by induction, the coloring of G is acyclic.

In Case 2, apply induction to construct an acyclic 3-coloring of Gi, for i=0, 1, · · · , k, with
colors c0, c1, and c2 such that c(u)=c0, c(v)=c1, and every path connecting u and v in Gi,
except for edge (u, v), contains a vertex w with c(w)=c2. By construction, c(u)=c0 and c(v)=c1.
Further, every path connecting u and v is also a path in a component Gi which, by induction,
contains a vertex with color c2, unless it is edge (u, v). Let C be any simple cycle in G. If
all the vertices of C belong to a graph Gi, then C is not bichromatic by induction. Otherwise,
C contains vertices u and v, hence it consists of two paths P1 and P2 connecting u and v and
belonging to two distinct components Gi and Gj . At most one of P1 and P2, say P1, coincides
with edge (u, v). By induction, P2 contains a vertex of color c2. ¤

Now we turn our attention to determine which are the SP-graphs such that every 3-coloring
is acyclic. A characterization and a linear-time algorithm are obtained through the following
lemmata, which characterize the SP-graphs that satisfy some coloring properties described be-
low.

First, we characterize the SP-graphs that have a 3-coloring in which the poles have distinct
colors and in which the poles have the same color.

Corollary 1 Every SP-graph with poles u and v admits a 3-coloring with c(u)6=c(v).

Lemma 3 Every SP-graph G with poles u and v admits a 3-coloring with c(u)=c(v) if and
only if G does not contain edge (u, v).

Proof: The necessity is trivial. We inductively prove the sufficiency. Suppose that G is
a parallel composition of SP-graphs G0, G1, . . . , Gk and that G does not contain edge (u, v).
Then, no component Gi contains (u, v), hence it admits a 3-coloring in which c(u)=c(v) by
induction. Suppose that G is a series composition of graphs G0, G1, . . . , Gk. Color G0 so that
c(u)=c0 and the other pole of G0 has color c1. Such a coloring exists by Corollary 1. For
1 ≤ i ≤ k − 1, assume that the color of the pole that Gi shares with Gi−1 has been already
determined to be either c1 or c2. Color the pole that Gi shares with Gi+1 with color c2 or c1,
respectively, and color Gi so that its poles have colors c1 and c2 (such a coloring exists by
Corollary 1). Complete the coloring of G by setting c(v)=c0 and by coloring Gk so that its
poles have colors c0 and either c1 or c2. Again, such a coloring exists by Corollary 1. ¤

Second, we characterize the SP-graphs that have a 3-coloring in which there exists a bichro-
matic path between the poles. The proof of Lemma 5 is analogous to the proof of Lemma 4.
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Lemma 4 Every SP-graph G with poles u and v admits a 3-coloring with c(u)6=c(v) and with
a bichromatic path between u and v if and only if the following two conditions are satisfied:

1. if G is a parallel composition of SP-graphs, then there exists a component that admits a
3-coloring with c(u) 6=c(v) and with a bichromatic path between u and v;

2. if G is a series composition of SP-graphs G0, G1, . . . , Gk, then each component admits
a 3-coloring with a bichromatic path between its poles, and at least one of the following
holds:

(a) there exists a component Gi with poles ui and vi that admits a 3-coloring with
c(ui)=c(vi) and with a bichromatic path between ui and vi, and a 3-coloring with
c(ui)6=c(vi) and with a bichromatic path between ui and vi;

(b) there exists an odd number of components that admit a 3-coloring in which the poles
have different colors and are connected by a bichromatic path.

Proof: We prove the necessity. If G is a parallel composition of SP-graphs and Condition 1
does not hold, then every 3-coloring in which c(u)6=c(v) does not contain a bichromatic path
between u and v. Suppose that G is a series composition of SP-graphs G0, G1, . . . , Gk and
that Condition 2 does not hold, that is, there exists a component Gi with poles ui and vi that
admits no 3-coloring with a bichromatic path between ui and vi. Every path connecting u and
v contains a path connecting ui and vi, hence it is not bichromatic. Suppose that G is a series
composition of graphs G0, G1, . . . , Gk, that Condition 2 holds, and that neither Condition 2a
nor Condition 2b holds. Then, in every 3-coloring with a bichromatic path between u and v,
there is an even number of components Gi such that c(ui)6=c(vi) and hence c(u)=c(v).

We prove the sufficiency. Case G = (u, v) is trivial. If G is a parallel composition of SP-
graphs, by Condition 1 there exists a component that admits a 3-coloring with c(u)6=c(v) and
with a bichromatic path between u and v. By Corollary 1, all other components can be colored
so that c(u)6=c(v). If G is a series composition of SP-graphs G0, G1, . . . , Gk and Conditions 2
and 2a hold, set c(u0)=c0. For 0 ≤ j ≤ i− 1, assume that c(uj) has already been determined to
be either c0 or c1; color Gj so that there exists a bichromatic path between uj and vj and so that
c(vj) is either c0 or c1. Analogously, set c(vk)=c1. For k ≥ j ≥ i + 1, assume that c(vj) has
been determined to be either c0 or c1; color Gj so that there exists a bichromatic path between
uj and vj and so that c(uj) is either c0 or c1. Color Gi so that there exists a bichromatic path
between ui and vi; this can be done both if c(ui)=c(vi) and if c(ui)6=c(vi). Finally, if G is a
series composition of SP-graphs and Conditions 2 and 2b hold, then each component has either
a 3-coloring with a bichromatic path between its poles and the poles have the same color, or a
3-coloring with a bichromatic path between its poles and the poles have distinct colors. Color
each component with such a coloring, so that its poles have colors in {c0, c1}. Since an odd
number of components have poles with different colors, c(u)6=c(v). ¤

Lemma 5 Every SP-graph G with poles u and v admits a 3-coloring with c(u)=c(v) and with
a bichromatic path between u and v if and only if the following three conditions are satisfied:

1. G does not contain edge (u, v);

2. if G is a parallel composition of SP-graphs, then there exists a component admitting a
3-coloring with c(u)=c(v) and with a bichromatic path between u and v;
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3. if G is a series composition of SP-graphs G0, G1, . . . , Gk, then each component admits
a 3-coloring with a bichromatic path between its poles, and at least one of the following
holds:

(a) there exists a component Gi with poles ui and vi admitting a 3-coloring with c(ui)=c(vi)
and with a bichromatic path between ui and vi, and a 3-coloring with c(ui)6=c(vi)
and with a bichromatic path between ui and vi;

(b) there exists an even number of components admitting a 3-coloring in which the poles
have different colors and are connected by a bichromatic path.

Third, we characterize the SP-graphs such that every 3-coloring in which the poles have
distinct colors is acyclic.

Lemma 6 Let G be a SP-graph with poles u and v. Suppose that G is a parallel composition
of SP-graphs G0, G1, . . . , Gk. Then every 3-coloring of G with c(u)6=c(v) is acyclic if and only
if the following two conditions are satisfied:

1. for each component Gi, every 3-coloring with c(u)6=c(v) is acyclic;

2. there exist no two components admitting a 3-coloring with c(u)6=c(v) and with a bichro-
matic path between u and v.

Proof: We prove the necessity. If Condition 1 does not hold, a component Gi exists that
admits a non-acyclic 3-coloring with c(u) 6=c(v). If Condition 2 does not hold, two components
exist that admit a 3-coloring with c(u)6=c(v) and with a bichromatic path between u and v.
Such paths form a bichromatic cycle in G. In both cases, by Corollary 1, each not yet colored
component of G admits a 3-coloring with c(u)6=c(v). Hence, a non-acyclic 3-coloring of G can
be constructed.

We prove the sufficiency. Consider any 3-coloring of G such that c(u)6=c(v). Every cycle
in G is either entirely contained inside a component of G (and then it is not bichromatic, by
Condition 1), or it consists of two paths between the poles of G. However, one of such paths is
not bichromatic (by Condition 2). ¤

Lemma 7 Let G be a SP-graph with poles u and v. Suppose that G is a series composition of
SP-graphs G0, G1, . . . , Gk. Then every 3-coloring of G with c(u)6=c(v) is acyclic if and only if
every 3-coloring of each component Gi is acyclic.

Proof: We prove the necessity. Suppose that a component Gi that admits a non-acyclic 3-
coloring exists with c(ui)6=c(vi) (resp. with c(ui)=c(vi)). If i < k, construct any 3-coloring of
Gj , where j 6=i and j < k. Let c0 and cx be the colors of u and uk, where x ∈ {0, 1}. Construct
a 3-coloring of Gk with c(uk)=cx and c(vk)=c2. Such a coloring exists by Corollary 1. The
resulting 3-coloring of G has c(u) 6=c(v) and is not acyclic. If i=k, a non-acyclic 3-coloring of
G with c(u)6=c(v) can be constructed analogously by first coloring Gj , with j > 0, and by then
suitably coloring G0.

We prove the sufficiency. Consider any 3-coloring of G with c(u)6=c(v). Each cycle in G is
entirely contained inside a component of G and then it is not bichromatic. ¤

Fourth, we characterize the SP-graphs such that every 3-coloring in which the poles have the
same color is acyclic. The proofs of Lemmata 8 and 9 are analogous to the proofs of Lemmata 6
and 7.
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Lemma 8 Let G be a SP-graph with poles u and v. Suppose that G is a parallel composition
of SP-graphs G0, G1, . . . , Gk. Then every 3-coloring of G with c(u)=c(v) is acyclic if and only
if one of the following two conditions is satisfied:

1. there exists a component Gi not admitting any 3-coloring with c(ui)=c(vi);

2. for each component Gi, every 3-coloring with c(u)=c(v) is acyclic and no two compo-
nents exist admitting a 3-coloring with c(u)=c(v) and with a bichromatic path between u
and v.

Lemma 9 Let G be a SP-graph with poles u and v. Suppose that G is a series composition of
SP-graphs G0, G1, . . . , Gk. Then every 3-coloring of G with c(u)=c(v) is acyclic if and only if
the following three conditions are satisfied:

1. for each component Gi with poles ui and vi, every 3-coloring with c(ui)6=c(vi) is acyclic;

2. if k > 2, for each component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi)
is acyclic;

3. if k=2, for each component Gi with poles ui and vi, every 3-coloring with c(ui)=c(vi) is
acyclic, or there exists a component not admitting any 3-coloring in which c(ui)=c(vi).

Finally, we conclude by observing that a SP-graph with poles u and v is such that every
3-coloring is acyclic if and only if every 3-coloring in which c(u)6=c(v) is acyclic and every
3-coloring in which c(u)=c(v) is acyclic. The above characterization gives rise to a linear-time
recognition algorithm:

Theorem 5 There exists a linear-time algorithm for deciding whether a SP-graph is such that
every 3-coloring is acyclic.

Proof: The SPQ-tree T of a SP-graph G can be computed in linear-time (see, e.g., [16]).
Then, each node µ of T with poles uµ and vµ can be equipped with values indicating whether:
(i) G(µ) admits a 3-coloring with c(uµ)=c(vµ); (ii) G(µ) admits a 3-coloring with c(uµ)6=c(vµ)
and with a bichromatic path between uµ and vµ, G(µ) admits a 3-coloring with c(uµ)=c(vµ) and
with a bichromatic path between uµ and vµ, and G(µ) admits a 3-coloring with a bichromatic
path between uµ and vµ; and (iii) every 3-coloring of G(µ) in which c(uµ)6=c(vµ) is acyclic,
every 3-coloring of G(µ) in which c(uµ)=c(vµ) is acyclic, and every 3-coloring of G(µ) is
acyclic. Due to Lemmata 3–9, the computation of such values for µ only requires simple checks
on analogous values for the children of µ in T . ¤

6 Conclusions
In this paper we have shown several results on the acyclic 3-colorability of planar graphs.

We have shown that recognizing acyclic 3-colorable planar graphs is NP-hard, even when
restricted to planar graphs of degree 4. Further, we have shown infinite classes of subcubic and
cubic planar graphs with no acyclic 3-coloring, result contrasting with the fact that all planar
graphs with degree 3 have a 3-coloring, except for K4 [7]. However, the following problem is
still open.
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Which is the time complexity of testing whether a sub-cubic graph (resp. a cubic graph)
admits an acyclic 3-coloring?

The problem seems to be interesting even when restricted to triconnected cubic planar
graphs. Moreover, we are aware of only three graphs that are cubic, triconnected, and not
acyclic 3-colorable (see Fig. 5). The graphs depicted in Figs. 5.a and 5.b were already known
to have no acyclic 3-coloring. On the other hand, the graph depicted in Fig. 5.c seems to have
gone unnoticed in the literature.

Figure 5: Triconnected cubic planar graphs with no acyclic 3-coloring.

Does an infinite number of triconnected, cubic, and not acyclic 3-colorable planar graphs
exist? Which is the time complexity of testing whether a triconnected cubic planar graph admits
an acyclic 3-coloring?

We have shown that, for any SP-graph G, whether every 3-coloring is acyclic can be tested
in linear time. Testing the same property for general planar graphs (and characterizing the
planar graphs for which every 3-coloring is acyclic) seems to be interesting and non-trivial.

Is it possible to test in polynomial time whether every 3-coloring of a given planar graph is
acyclic?

Finally, we would like to remind a problem that has been already studied in the literature
but that has not been tackled in this paper.

Which is the smallest k such that all planar graphs with girth at least k are acyclic 3-
colorable?

Currently, the best known lower bound for k is 5 (the second graph of Fig. 5, proposed by
Grünbaum, has girth 4 and is not acyclic 3-colorable [9]). On the other hand, the best known
upper bound for k is 7, proved by Borodin, Kostochka, and Woodall [6].
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