
Querying Databases with Taxonomies

Davide Martinenghi1 and Riccardo Torlone2

1Dip. di Elettronica e Informazione
Politecnico di Milano, Italy
martinen@elet.polimi.it

2Dip. di Informatica e Automazione
Università Roma Tre, Italy
torlone@dia.uniroma3.it

Abstract. Traditional information search in which queries are posed
against a known and rigid schema over a structured database is shifting
towards a Web scenario in which exposed schemas are vague or absent
and data comes from heterogeneous sources. In this framework, query
answering cannot be precise and needs to be relaxed, with the goal of
matching user requests with accessible data. In this paper, we propose a
logical model and an abstract query language as a foundation for query-
ing data sets with vague schemas. Our approach takes advantages of
the availability of taxonomies, that is, simple classifications of terms ar-
ranged in a hierarchical structure. The model is a natural extension of
the relational model in which data domains are organized in hierarchies,
according to different levels of generalization. The query language is a
conservative extension of relational algebra where special operators allow
the specification of relaxed queries over vaguely structured information.
We study equivalence and rewriting properties of the query language
that can be used for query optimization.

1 Introduction

There are today many application scenarios in which user queries do not match
the structure and the content of data repositories, given the nature of the ap-
plication domain or just because the schema is not available. This happens for
instance in location-based search (find an opera concert in Paris next summer),
multifaceted product search (find a cheap blu-ray player with an adequate user
rating), multi-domain search (find a database conference held in a seaside loca-
tion), and social search (find the objects that my friends like). In these situations,
the query is usually relaxed to accommodate user’s needs, and query answering
relies on finding the best matching between the request and the available data.

In spite of this trend towards “schema-agnostic” applications, the support of
current database technology for query relaxation is quite limited. The only ex-
amples are in the context of semi-structured information, in which schemas and
values are varied and/or missing [1]. Conversely, the above mentioned applica-
tions can greatly benefit from applying traditional relational database technology
enhanced with a comprehensive support for the management of query relaxation.

To this aim, we propose in this paper a logical data model and an abstract
query language supporting query relaxation over relational data. Our approach
relies on the availability of taxonomies, that is, simple ontologies in which terms

used in schemas and data are arranged in a hierarchical structure according to
a generalization-specialization relationship. The data model is a natural exten-
sion of the relational model in which data domains are organized in hierarchies,
according to different levels of detail: this guarantees a smooth implementation
of the approach with current database technology. In this model data and meta-
data can be expressed at different levels of detail. This is made possible by a
partial order relationship defined both at the schema and at the instance level.

The query language is called Taxonomy-based Relational Algebra (TRA) and
is a conservative extension of relational algebra. TRA includes two special opera-
tors that extend the capabilities of standard selection and join by relating values
occurring in tuples with values in the query using the taxonomy. In this way, we
can formulate relaxed queries that refer to attributes and terms different from
those occurring in the actual database. We also present general algebraic rules
governing the operators over taxonomies and their interactions with standard
relational algebra operators. The rules provide a formal foundation for query
equivalence and for the algebraic optimization of queries over vague schemas.

In sum, the contributions of this paper are the following: (i) a simple but
solid framework for embedding taxonomies into relational databases: the frame-
work does not depend on a specific domain of application and makes the com-
parison of heterogeneous data possible and straightforward; (ii) a simple but
powerful algebraic language for supporting query relaxation: the query language
makes it possible to formulate complex searches over vague schemas in differ-
ent application domains; (iii) the investigation of the relationships between the
query language operators and the identification of a number of equivalence rules:
the rules provide a formal foundation for the algebraic optimization of relaxed
queries.

Because of space limitation, we do not address the issue of implementing
the formal framework proposed in this paper and we disregard the orthogonal
problem of taxonomy design. Both issues will be addressed in forthcoming works.

2 A Data Model with Taxonomies

2.1 Partial orders and lattices

A (weak) partial order ≤ on a domain V is a subset of V × V whose elements
are denoted by v1 ≤ v2 that is: reflexive (v ≤ v for all v ∈ V), antisymmetric (if
v1 ≤ v2 and v2 ≤ v1 then v1 = v2), and transitive (if v1 ≤ v2 and v2 ≤ v3 then
v1 ≤ v3). If v1 ≤ v2 we say that v1 is included in v2. A set of values V with a
partial order ≤ is called a poset.

A lower bound (upper bound) of two elements v1 and v2 in a poset (V,≤) is
an element b ∈ V such that b ≤ v1 and b ≤ v2 (v1 ≤ b and v2 ≤ b). A maximal
lower bound (minimal upper bound) is a lower bound (upper bound) b of two
elements v1 and v2 in a poset (V,≤) such that there is no lower bound (upper
bound) b′ of v1 and v2 such that b′ ≤ b (b ≤ b′).

The greatest lower bound or glb (least upper bound or lub) is a lower bound
(upper bound) b of two elements v1 and v2 in a poset (V,≤) such that b′ ≤ b

(b ≤ b′) for any other lower bound (upper bound) b′ of v1 and v2. It easily follows
that if a lub (glb) exists, then it is unique. The glb and the lub are also called
meet and join, respectively.

A lattice is a poset in which any two elements have both a glb and a lub. The
glb and lub can also be defined over a set of elements. By induction, it follows
that every non-empty finite subset of a lattice has a glb and a lub.

2.2 Hierarchical domains and t-relations

The basic construct of our model is the hierarchical domain or simply the h-
domain, a collection of values arranged in a containment hierarchy. Each h-
domain is described by means of a set of levels representing the domain of
interest at different degrees of granularity. For instance, the h-domain time can
be organized in levels like day, week, month, and year.

Definition 1 (H-domain). An h-domain h is composed of:

– a finite set L = {l1, . . . , lk} of levels, each of which is associated with a set
of values called the members of the level and denoted by M(l);

– a partial order ≤L on L having a bottom element, denoted by ⊥L, and a top
element, denoted by >L, such that:
• M(⊥L) contains a set of ground members whereas all the other levels

contain members that represent groups of ground members;
• M(>L) contains only a special member m> that represents all the ground

members;
– a family CM of containment mappings cmapl2l1 : M(l1) → M(l2) for each

pair of levels l1 ≤L l2 satisfying the following consistency conditions:
• for each level l, the function cmapll is the identity on the members of l;
• for each pair of levels l1 and l2 such that l1 ≤L l ≤L l2 and l1 ≤L l′ ≤L l2

for some l 6= l′, we have: cmapl2l (cmapll1(m)) = cmapl2l′ (cmapl
′

l1
(m)) for

each member m of l1.

Example 1. The h-domain time has a bottom level whose (ground) members
are timestamps and a top level whose only member, anytime, represents all
possible timestamps. Other levels can be day, week, month, quarter, season and
year, where day ≤L month ≤L quarter ≤L year and day ≤L season. A possible
member of the Day level is 23/07/2010, which is mapped by the containment
mappings to the member 07/2010 of the level month and to the member Summer
of the level season.

As should be clear from Definition 1, in this paper we consider a general notion
of taxonomy in which, whenever l1 ≤L l2 for two levels in an h-domain, then the
set of ground members for l1 is contained in the set of ground members for l2.

The following result can be easily shown.

Proposition 1. The poset (L,≤L) is a lattice and therefore every pair of levels
l1 and l2 in L has both a glb and a lub.

Actually, a partial order ≤M can also be defined on the members M of an h-
domain h: it is induced by the containment mappings as follows.

Definition 2 (Poset on members). Let h be an h-domain and m1 and m2 be
members of levels l1 and l2 of h, respectively. We have that m1 ≤M m2 if: (i)
l1 ≤L l2 and (ii) cmapl2l1(m1) = m2.

Example 2. Consider the h-domain of Example 1. Given the members m1 =
29/06/2010 and m2 = 23/08/2010 of the level day, m3 = 06/2010 and m4 =
08/2010 of the level month, m5 = 2Q 2010 and m6 = 3Q 2010 of the level
quarter, m7 = 2010 of the level year, and m8 = Summer of the level season, we
have: m1 ≤M m3 ≤M m5 ≤M m7, m2 ≤M m4 ≤M m6 ≤M m7, and m1 ≤M m8

and m2 ≤M m8.

Example 2 shows an interesting property: differently from the poset on the levels
on an h-domain, the poset on the members of an h-domain is not a lattice in
general. Consider for instance the members m1 and m2 of the example above:
they have no lower bound, since their intersection is empty (more precisely, the
intersection of the ground members that they represent is empty), and have
two incomparable minimal upper bounds: 2010 at the year level and Summer
at the season level. Indeed, it is possible to show that the poset (M,≤M) can
be converted into a lattice by adding to M all the elements of the powerset of
the ground members (including the empty set, which would become the bottom
level). This however would imply an explosion of the number of members and
an unnatural representation of an h-domain.

We are ready to introduce the main construct of the data model: the t-
relation, a natural extension of a relational table built over taxonomies of values.

Definition 3 (T-relation). Let H be a set of h-domains. We denote by S =
{A1 : l1, . . . , Ak : lk} a t-schema (schema over taxonomies), where each Ai is a
distinct attribute name and each li is a level of some h-domain in H. A t-tuple
t over a t-schema S = {A1 : l1, . . . , Ak : lk} is a function mapping each attribute
Ai to a member of li. A t-relation r over S is a set of t-tuples over S.

Given a t-tuple t over a t-schema S and an attribute Ai occurring in S on level
li, we will denote by t[Ai : li] the member of level li associated with t on Ai.
Following common practice in relational database literature, we use the same
notation A : l to indicate both the single attribute-level pair A : l and the
singleton set {A : l}; also, we indicate the union of attribute-level pairs (or sets
thereof) by means of the juxtaposition of their names. For a subset S′ of S, we
will denote by t[S′] the restriction of t to S′. Finally, for the sake of simplicity,
often in the following we will not make any distinction between the name of an
attribute of a t-relation and the name of the corresponding h-domain, when no
ambiguities can arise.

Example 3. As an example, a t-schema over the h-domains time, location
and weather conditions can be the following: S = {Time : day, Location :
city,Weather : brief}. A possible t-relation over this schema is the following:

r1 =
Time: day Location: city Weather: brief

11/05/2010 Rome Sunny t1,1
24/04/2009 Milan Cloudy t1,2
24/07/2010 New York Showers t1,3

Then we have: t1,1[Location:city] = Rome.

A partial order relation on both t-schemas and t-relations can be also defined in
a natural way.

Definition 4 (Poset on t-schemas). Let S1 and S2 be t-schemas over a set
of h-domains H1 and H2 respectively. We have that S1 ≤S S2 if: (i) H2 ⊆ H1,
and (ii) for each Ai : li ∈ S2 there is an element Ai : lj ∈ S1 such that lj ≤L li.
Definition 5 (Poset on t-tuples). Let t1 and t2 be t-tuples over S1 and S2

respectively. We have that t1 ≤t t2 if: (i) S1 ≤S S2, and (ii) for each Ai : li ∈ S2

there is an element Ai : lj ∈ S1 such that t1[Ai : lj] ≤M t2[Ai : li].

Definition 6 (Poset on t-relations). Let r1 and r2 be t-relations over S1 and
S2 respectively. We have that r1 ≤r r2 if for each t-tuple t ∈ r1 there is a t-tuple
t′ ∈ r2 such that t ≤t t′.
Note that, in these definitions, we assume that levels of the same h-domain occur
in different t-schemas with the same attribute name: this strongly simplifies the
notation that follows without loss of expressibility. Basically, it suffices to use
as attribute name the role played by the h-domain in the application scenario
modeled by the t-schema.

Example 4. Consider the following t-relations:
S1 = Title:cultural-event Author:artist Time:day Location:theater
r1 = Romeo & Juliet Prokofiev 13/04/2010 La Scala t1,1

Carmen Bizet 24/05/2010 Opéra Garnier t1,2
Requiem Verdi 28/03/2010 La Scala t1,3

La bohème Puccini 09/01/2010 Opéra Garnier t1,4

S2 = Title:event Time:quarter Location:city
r2 = Concert 1Q 2010 Milan t2,1

Ballet 2Q 2010 Milan t2,2
Sport 3Q 2010 Rome t2,3
Opera 2Q 2010 Paris t2,4

Then, it is easy to see that: (i) S1 ≤S S2, and (ii) t1,1 ≤t t2,2, t1,2 ≤t t2,4,
t1,3 ≤t t2,1, and t1,4 ≤t t2,4. It follows that r1 ≤r r2.

The same considerations done for the poset on levels also apply to the poset on
t-schemas.

Proposition 2. Let S be the set of all possible t-schemas over a set of h-domains
H. Then, the poset (S,≤S) is a lattice.

Conversely, the poset on t-relations is not a lattice in general since, it is easy to
show that, given two t-relations, they can have more than one minimal upper
bound (but necessarily at least one) as well as more than one maximal lower
bound (possibly none).

In the following, for the sake of simplicity, we will often make no distinction
between the name of an attribute and the corresponding level.

3 Querying with Taxonomies

In this section we present TRA (Taxonomy-based Relational Algebra) an exten-
sion of relational algebra over t-relations. This language provides insights on the
way in which data can be manipulated taking advantage of available taxonomies
over those data. Moreover, for its procedural nature, it can be profitably used to
specify query optimization. The goal is to provide a solid foundation to querying
databases with taxonomies.

Similarly to what happens with the standard relational algebra, the operators
of TRA are closed, that is, they apply to t-relations and produce a t-relation
as result. In this way, the various operators can be composed to form the t-
expressions of the language.

TRA is a conservative extension of basic relational algebra (RA) and so it
includes its standard operators: selection (σ), projection (π), and natural join
(./). It also includes some variants of these operators that are obtained by
combining them with the following two new operators.

Definition 7 (Upward extension). Let r be a t-relation over S, A be an
attribute in S defined over a level l, and l′ be a level such that l ≤L l′. The
upward extension of r to l′, denoted by ε̂A:l′

A:l (r), is the t-relation over S∪{A : l′}
defined as follows:

ε̂A:l′

A:l (r) = {t | ∃t′ ∈ r : t[S] = t′, t[A : l′] = cmapl
′

l (t′[A : l])}

Definition 8 (Downward extension). Let r be a t-relation over S, A be an
attribute in S defined over a level l, and l′ be a level such that l′ ≤L l. The
downward extension of r to l′, denoted by ε̌A:l

A:l′(r), is the t-relation over S∪{A :
l′} defined as follows:

ε̌A:l
A:l′(r) = {t | ∃t′ ∈ r : t[S] = t′, t′[A : l] = cmapll′(t[A : l′])}

For simplicity, in the following we will often simply write ε̂l
′

l or ε̌l
′

l , when there
is no ambiguity on the attribute name associated with the corresponding levels.

Example 5. Consider the t-relations r1 and r2 from Example 4. The result of
ε̂city

theater(r1) is the following t-relation.
S3 = Title:cultural-event Author:artist Time:day Location:theater Location:city
r3 = Romeo & Juliet Prokofiev 13/04/2010 La Scala Milan t3,1

Carmen Bizet 24/05/2010 Opéra Garnier Paris t3,2
Requiem Verdi 28/03/2010 La Scala Milan t3,3

La bohème Puccini 09/01/2010 Opéra Garnier Paris t3,4

The result of ε̌quarter
month (r2) is the following t-relation.
S4 = Title:event Time:quarter Location:city Time:month
r4 = Concert 1Q 2010 Milan Jan 2010 t4,1

Concert 1Q 2010 Milan Feb 2010 t4,2
Concert 1Q 2010 Milan Mar 2010 t4,3
Sport 3Q 2010 Rome Jul 2010 t4,4
Sport 3Q 2010 Rome Aug 2010 t4,5
Sport 3Q 2010 Rome Sep 2010 t4,6
.

The main rationale behind the introduction of the upward extension is the need
to relax a query with respect to the level of detail of the queried information.
For example, one might want to find events taking place in a given country, even
though the events might be stored with a finer granularity (e.g., city). Similarly,
the downward extension allows the relaxation of the answer with respect to the
level of detail of the query. For instance, a query about products available in a
given day may return the products available in that day’s month. Both kinds of
extensions meet needs that arise naturally in several application domains.

For this purpose, we introduce two new operators for the selection that lever-
age the available taxonomies; they can reference an h-domain that is more gen-
eral or more specific than that occurring in its tuples.

Definition 9 (Upward selection). Let r be a t-relation over S, A be an
attribute in S defined over l, m be a member of l′ with l ≤L l′, and θ ∈
{=, <,>,≤, ≥, 6=}: the upward selection of r with respect to Aθm on level
l, denoted by σ̂A:l θ m(r), is the t-relation over S defined as follows:

σ̂A:l θ m(r) = {t ∈ r | cmapl
′

l (t[A : l]) θm}

Definition 10 (Downward selection). Let r be a t-relation over S, A be
an attribute in S defined over l, m be a member of l′ with l′ ≤L l, and θ ∈
{=, <,>, ≤,≥, 6=}: the downward selection of r with respect to Aθm on level l,
denoted by σ̌A:l θ m(r), is the t-relation over S defined as follows:

σ̌A:l θ m(r) = {t ∈ r | cmapll′(m) θ t[A : l]}

In the following, we will often simply write σ̂Aθm and σ̌Aθm, without explicitly
indicating the name of the level, when this is unambiguously determined by
the corresponding attribute. Also, we will call these operators t-selections, to
distinguish them from the standard selection operator.

Example 6. Consider again the t-relations r1 and r2 from Example 4. We have
that: σ̂City=Milan(r1) = {t1,1, t1,3} and σ̌Day=13/03/2010(r2) = {t2,1}.

It can be easily seen that these operators can be obtained by composing
the upward or downward extension, the (standard) selection, and the projection
operators, as shown in (1) and (2) below.

σ̂A:l θ m(r) = πS(σA:l′ θm(ε̂A:l′

A:l (r))) (1)

σ̌A:l θ m(r) = πS(σA:l′ θm(ε̌A:l
A:l′(r))) (2)

Finally, we introduce two new join operators. Their main purpose is to com-
bine information stored at different levels of granularity.

Definition 11 (Upward join). Let r1 and r2 be two t-relations over S1 and
S2 respectively, and let S be an upper bound of a subset S̄1 of S1 and a subset

S̄2 of S2. The upward join of r1 and r2 with respect to S on S̄1 and S̄2, denoted
by r1.̂/S:S̄1,S̄2

r2, is the t-relation over S1 ∪ S2 defined as follows:

r1.̂/S:S̄1,S̄2
r2 = { t | ∃t1 ∈ r1,∃t2 ∈ r2,∃t′over S : t1[S̄1] ≤t t′,

t2[S̄2] ≤t t′, t[S1] = t1, t[S2] = t2}

Definition 12 (Downward join). Let r1 and r2 be two t-relations over S1 and
S2 respectively, and let S be a lower bound of a subset S̄1 of S1 and a subset S̄2

of S2. The downward join of r1 and r2 with respect to S on S̄1 and S̄2, denoted
by r1.̌/S:S̄1,S̄2

r2, is the t-relation over S1 ∪ S2 defined as follows:

r1.̌/S:S̄1,S̄2
r2 = { t | ∃t1 ∈ r1,∃t2 ∈ r2,∃t′over S : t′ ≤t t1[S̄1],

t′ ≤t t2[S̄2], t[S1] = t1, t[S2] = t2}

In the following, we will omit the indication of S̄1 and S̄2 when evident from the
context. Also, we will call these operators t-joins, to distinguish them from the
standard join operator.

Example 7. Consider the t-relation r1 from Example 4 and the following t-
relation.

S5 = Company:airline-company Location:airport
r5 = Alitalia Linate t5,1

Air France Roissy t5,2

The result of r1.̂/cityr5 is the following t-relation:

S6 = Event:cultural-event Author:artist Time:day Location:theater Company:airline-company Location:airport
r6 = Romeo & Juliet Prokofiev 24/04/2010 La Scala Alitalia Linate t6,1

Carmen Bizet 24/05/2010 Opéra Garnier Air France Roissy t6,2
Requiem Verdi 24/03/2010 La Scala Alitalia Linate t6,3

La bohème Puccini 09/01/2010 Opéra Garnier Air France Roissy t6,4

Now, consider the following t-relations.

S7 = Loc:theater Time:year Price:money
r7 = La Scala 2010 150 t7,1

S8 = Loc:theater Time:month Discount:perc.
r8 = La Scala 03/2010 10% t8,1

La Scala 06/2010 20% t8,2

The result of r7.̌/theater,dayr8 is the following t-relation:

S9 = Loc:theater Time:year Price:money Time:month Discount:perc.
r9 = La Scala 2010 150 03/2010 10% t9,1

La Scala 2010 150 06/2010 20% t9,2

Also in this case, both the upward join and the downward join can be obtained by
combining the upward extension or the downward extension, and the (standard)
join. Equation (3) below shows this for the upward join, where S = {A1 :
l1, . . . , An : ln}, Si ⊇ S̄i ⊇ {A1 : l1i , . . . , A

n : lni } for i = 1, 2, and P is a predicate
requiring pairwise equality in both sides of the join for all fields added by the
extensions.

r1.̂/S:S̄1,S̄2
r2 = πS1S2(ε̂A

1:l1

A1:l11
· · · ε̂A

n:ln

An:ln1
(r1)./P ε̂

A1:l1

A1:l12
· · · ε̂A

n:ln

An:ln2
(r2)) (3)

Equation (4) below shows this for the downward join, where S ⊇ {A1 :
l1, . . . , An : ln}, Si ⊇ S̄i ⊇ {A1 : l1i , . . . , A

n : lni } for i = 1, 2, and P is as
above.

r1.̌/S:S̄1,S̄2
r2 = πS1S2(ε̌A

1:l11
A1:l1 · · · ε̌

An:ln1
An:ln(r1)./P ε̌

A1:l12
A1:l1 · · · ε̌

An:ln2
An:ln(r2)) (4)

As in the standard relational algebra, it is possible to build complex expres-
sions combining several TRA operators thanks to the fact that TRA is closed,
i.e., the result of every application of an operator is a t-relation. Formally, one
can define and build the expressions of TRA, called t-expressions, by assuming
that t-relations themselves are t-expressions, and by substituting the t-relations
appearing in Definitions 7-12 with a t-expression. Similar extensions are possible
for other RA operators (e.g., difference); we omit them in the interest of space.

4 Query equivalence in TRA

One of the main benefits of Relational Algebra is the use of algebraic properties
for query optimization. In particular, equivalences allow transforming a relational
expression into an equivalent expression in which the average size of the relations
yielded by subexpressions is smaller. Rewritings may be used, e.g., to break
up an application of an operator into several, smaller applications, or to move
operators to more convenient places in the expression (e.g., pushing selection
and projection through join). In analogy with the standard case, we are now
going to describe a collection of new equivalences that can be used for query
optimization in Taxonomy-based Relational Algebra.

In the remainder of this section, we shall use, together with possible sub-
scripts and primes, the letter r to denote a t-relation, l for a level, A for a set of
attributes, and P for a (selection or join) predicate.

4.1 Upward and downward extension

Border cases
Let l be the level of an attribute in r. Then:

ε̂ll(r) = ε̌ll(r) = r (5)

Equivalence (5) shows that if the upper and lower level of an extension coincide,
then the extension is idle, both for the upward and for the downward case. The
proof of (5) follows immediately from Definitions 7 and 8.

Idempotency
Let l be the level of an attribute in r such that l ≤L l′ and l′′ ≤L l. Then:

ε̂l
′

l (ε̂l
′

l (r)) = ε̂l
′

l (r) (6)

ε̌ll′′(ε̌
l
l′′(r)) = ε̌ll′′(r) (7)

Equivalences (6) and (7) state that repeated applications of the same extension
are idle, both for the upward and for the downward case. Here, too, the proof
follows immediately from Definitions 7 and 8.

Duality
Let l be the level of an attribute in r such that l′ ≤L l. Then:

ε̂ll′(ε̌
l
l′(r)) = ε̌ll′(r) (8)

The above Equivalence (8) shows that an upward extension is always idle after
a downward extension on the same levels. To prove (8), it suffices to consider
that the mapping from members of a lower level to members of an upper level is
many-to-one, so no new tuple can be generated by the upward extension. Note,
however, that the downward extension after an upward extension on the same
levels is generally not redundant, since the mapping from members of an upper
level to members of a lower level is one-to-many.

Commutativity
Let l1, l2 be levels of attributes of r, s.t. li ≤L l′i and l′′i ≤L li, for i = 1, 2. Then:

ε̂l
′
2
l2

(ε̂l
′
1
l1

(r)) = ε̂l
′
1
l1

(ε̂l
′
2
l2

(r)) (9)

ε̌l2l′′2 (ε̌l1l′′1 (r)) = ε̌l1l′′1 (ε̌l2l′′2 (r)) (10)

The above Equivalences (9) and (10) state that two extensions of the same kind
can be swapped. Both follow straightforwardly from Definitions 7 and 8.

Interplay with standard projection
Let l be the level of an attribute A in a relation r over S s.t. l ≤L l′1 ≤L l′2 and
l2 ≤L l1 ≤L l, and let Ap ⊆ S s.t. Ap 63 A : l1 and Ap 63 A : l′1. Then:

πAp
ε̂A:l′2
A:l (r) = πAp

ε̂A:l′2
A:l′1

(ε̂A:l′1
A:l (r)) (11)

πAp
ε̌A:l
A:l2(r) = πAp

ε̌A:l1
A:l2(ε̌A:l

A:l1(r)) (12)

Note that the outerπAp
in Equivalence (11) is necessary, because, in case l 6=

l′1 6= l′2, the left-hand sides of the equivalences would be t-relations that do
not include the attribute-level pair A : l′1, whereas the right-hand sides would;
therefore, projecting away A : l′1 is essential. Similarly for Equivalence (12).

Let l be the level of an attribute A in a relation r over S s.t. l ≤L l′ and
l′′ ≤L l, and Ap ⊆ S s.t. Ap 63 A : l′ and Ap 63 A : l′′. Then:

πAp
(ε̂A:l′

A:l (r)) = ε̂A:l′

A:l (πAp
(r)) (13)

πAp(ε̌A:l
A:l′′(r)) = ε̌A:l

A:l′′(πAp(r)) (14)

Equivalences (13) and (14) show that, similarly to Equivalences (11) and (12),
it is also possible to swap extension and standard projection provided that the
projection does not retain the added attribute.

Interplay with standard selection
Let l be the level of an attribute A in r s.t. l ≤L l′ and l′′ ≤L l, and P be a
selection predicate that does not refer either to A : l′ or A : l′′. Then:

σP (ε̂A:l′

A:l (r)) = ε̂A:l′

A:l (σP (r)) (15)

σP (ε̌A:l
A:l′′(r)) = ε̌A:l

A:l′′(σP (r)) (16)

Equivalences (15) and (16) show swapping of extension and standard selection,
when the added attribute-level pair is immaterial to the selection predicate.

Interplay with standard join
Let l be the level of an attribute A in r1 but not r2 s.t. l ≤L l′, l′′ ≤L l, and P
be a join predicate that does not refer either to A : l′ or A : l′′. Then:

ε̂A:l′

A:l (r1./P r2) = (ε̂A:l′

A:l (r1))./P r2 (17)

ε̌A:l
A:l′′(r1./P r2) = (ε̌A:l

A:l′′(r1))./P r2 (18)

Equivalences (17) and (18) show that extension can be “pushed” through stan-
dard join. (Note that, if A : l was in the schema of both r1 and r2, the extension
should be “pushed” through both sides of the join.)

4.2 Upward and downward selection

Idempotency
Let l be the level of an attribute A of r s.t. l ≤L l′ and l′′ ≤L l, where l′ is the
level of m′ and l′′ of m′′. Then:

σ̂A:l θ m′(σ̂A:l θ m′(r)) = σ̂A:l θ m′(r) (19)
σ̌A:l θ m′′(σ̌A:l θ m′′(r)) = σ̌A:l θ m′′(r) (20)

Equivalences (19) and (20) state that repeated applications of the same t-
selection are idle, both for the upward and for the downward case. To prove (19),
consider that, by (1), the left-hand side of the equivalence can be written as:

πS(σA:l′ θm′(ε̂A:l′

A:l (πS(σA:l′ θm′(ε̂A:l′

A:l (r))))))

where S is the schema of r. The innermost πS can be moved outside the upward
selection by using equivalence (13) if l 6= l′ or equivalence (5) if l = l′. By using
standard properties of the relational operators, the innermost πS can also be
moved outside the outermost selection, and eliminated by idempotency:

πS(σA:l′ θm′(ε̂A:l′

A:l (σA:l′ θm′(ε̂A:l′

A:l (r)))))

Now, equivalence (15) allows swapping selection and upward extension provided
that the selection predicate does not refer to the attribute-level pair introduced
by ε̂. This condition is only required to make sure that, after the swap, the

selection refers to an existing attribute-level pair. Therefore, equivalence (15) can
be used here to move the innermost selection outside the outermost ε̂, although
A : l′ θm′ is a predicate that clearly refers to A : l′ (l′ being the level of m′),
since A : l′ is already introduced by the innermost ε̂. By idempotency of both
standard selection and upward extension (as of equivalence (6)), we obtain

πS(σA:l′ θm′(ε̂A:l′

A:l (r)))

which, by (1), corresponds to the right-hand side of (19). Analogously for (20).

Commutativity

σ̂l2:A2 θ2m2(σ̂l1:A1 θ1m1(r)) = σ̂l1:A1 θ1m1(σ̂l2:A2 θ2m2(r)) (21)
σ̌l2:A2 θ2m2(σ̌l1:A1 θ1m1(r)) = σ̌l1:A1 θ1m1(σ̌l2:A2 θ2m2(r)) (22)
σ̌l2:A2 θ2m2(σ̂l1:A1 θ1m1(r)) = σ̂l1:A1 θ1m1(σ̌l2:A2 θ2m2(r)) (23)

The above equivalences state that t-selection is commutative, both for the up-
ward and the downward case. Moreover, an upward selection can be swapped
with a downward selection (and vice versa), as shown in equivalence (23). The
proof of these follows straightforwardly from commutativity of standard selection
and interplay of extension and standard selection.

4.3 Upward and downward join

Pushing upward and downward selection through upward and downward join
Let A : l be in the schema S1 of r1 but not in the schema S2 of r2, and Clow and
Cup be a lower and an upper bound of C1 ⊆ S1 and C2 ⊆ S2. Then:

σ̂A:l θ m(r1.̂/Cup:C1,C2r2) = (σ̂A:l θ mr1).̂/Cup:C1,C2r2 (24)
σ̂A:l θ m(r1.̌/Clow:C1,C2r2) = (σ̂A:l θ mr1).̌/Clow:C1,C2r2 (25)
σ̌A:l θ m(r1.̂/Cup:C1,C2r2) = (σ̌A:l θ mr1).̂/Cup:C1,C2r2 (26)
σ̌A:l θ m(r1.̌/Clow:C1,C2r2) = (σ̌A:l θ mr1).̌/Clow:C1,C2r2 (27)

The above equivalences (24)-(27) indicate that a t-selection can be “pushed”
through a t-join on the side that involves the attribute-level pair used in the
selection. To prove the equivalences, it suffices to use (1)-(4) and the properties
of standard operators.

Pushing standard projection through upward and downward join
Let ri be a t-relation over Si for i = 1, 2, Clow and Cup be a lower and an upper
bound of C1 ⊆ S1 and C2 ⊆ S2, L be a subset of S1 ∪S2, and Li = Ci ∪ (L \Si)
for i = 1, 2. Then:

πL(r1.̂/Cup:C1,C2r2) = πL((πL1r1).̂/Cup:C1,C2(πL2r2)) (28)
πL(r1.̌/Clow:C1,C2r2) = πL((πL1r1).̌/Clow:C1,C2(πL2r2)) (29)

Equivalences (28) and (29) show how standard projection can be “pushed”
through an upward or downward join to both sides of the join by properly
breaking up the projection attributes into smaller sets. Again, the equivalences
follow immediately by applying (3) and (4) together with the standard “push” of
projection through join and through extension (as of equivalences (13) and (14)).

From the above discussion, we have the following correctness result.

Theorem 1. Equivalences (5)-(29) hold for any possible t-relation.

Theorem 1 together with the fact that TRA is closed entails that equiva-
lences (5)-(29) can also be used to test equivalence of complex t-expressions.

Finally, we observe that some applications of the TRA operators preserve
partial order between relations. For instance, r1 ≤r r2 entails (i) (ε̂l

′

l (r1)) ≤r r2,
(ii) (ε̌ll′(r1)) ≤r r2, and (iii) r1 ≤r (ε̂l

′

l (r2)), but not (iv) r1 ≤r (ε̌ll′(r2)).

5 Related work

The approach proposed in this paper, which extends to a more general scenario
a work on modeling context-aware database applications [10], is focused on the
relaxation of queries to a less restricted form with the goal of accommodat-
ing user’s needs. This problem has been investigated in several research areas
under different perspectives. In the database area, query relaxation has been
addressed in the context of XML and semi-structured databases, with the goal
of combining database style querying and keyword search [1] and for querying
databases with natural language interfaces [9]. Query relaxation has also been
addressed to avoid empty answers to complex queries by adjusting values occur-
ring in selections and joins [8]. Malleable schemas [5, 11] deals with vagueness
and ambiguity in database querying by incorporating imprecise and overlap-
ping definitions of data structures. An alternative formal framework relies on
multi-structural databases [6], where data objects are segmented according to
multiple distinct criteria in a lattice structure and queries are formulated in this
structure. The majority of these approaches rely on non-traditional data models,
whereas we refer on a simple extension of the relational model. Moreover, none
of them consider relaxation via taxonomies, which is our concern. In addition,
the systematic analysis of query equivalence for optimization purposes has never
been studied in the relaxed case.

Query relaxation is also used in location-based search [4], but in the typical
IR scenario in which a query consists of a set of terms and query evaluation is
focused in the ranked retrieval of documents. This is also the case of the approach
in [3], where the authors consider the problem of fuzzy matching queries to items.
Actually, in the information retrieval area, which is however clearly different
from ours, document taxonomies have been already used in, e.g., [7], where the
authors focus on classifying documents into taxonomy nodes and developing the
scoring function to make the matching work well in practice, and in [2], where
the authors propose a framework for relaxing user requests over ontologies, a
notion that is more general than that of taxonomy.

6 Conclusion

In this paper, we have presented a logical model and an algebraic language as
a foundation for querying databases using taxonomies. In order to facilitate the
implementation of the approach with current technology, they rely on a natural
extension of the relational model. The hierarchical organization of data allows the
specification of queries that refer to values at varying levels of details, possibly
different from those available in the underlying database. We have also studied
the interaction between the various operators of the query language as a formal
foundation for the optimization of taxonomy-based queries.

We believe that several interesting directions of research can be pursued
within the framework presented in this paper. We are particularly interested into
a deep investigation of general properties of the query language. In particular,
we plan to develop methods for the automatic identification of the level in which
two heterogeneous t-relations can be joined for integration purposes. Also, we are
currently studying the impact of our model on the complexity of query answering.
On the practical side, we plan to study how the presented approach can be
implemented, in particular whether materialization of taxonomies is convenient.
With this prototype, we plan to develop quantitative analysis oriented to the
optimization of relaxed queries. The equivalence results presented in this paper
provide an important contribution in this direction.

Acknowledgments. D. Martinenghi acknowledges support from the Search
Computing (SeCo) project, funded by the European Research Council (ERC).

References
1. S. Amer-Yahia, L. V. S. Lakshmanan, and S. Pandit. Flexpath: Flexible structure

and full-text querying for XML. In Proc. of SIGMOD, pag. 83–94, 2004.
2. W.-T. Balke and M. Wagner. Through different eyes: assessing multiple conceptual

views for querying web services. In Proc. of WWW, pages 196–205, 2004.
3. A. Z. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to

contextual advertising. In Proc. of SIGIR, pages 559-566, 2007.
4. Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic

web search engines. In Proc. of SIGMOD, pag. 277–288, 2006.
5. X. Dong and A. Y. Halevy. Malleable schemas: A preliminary report. In Proc. of

WebDB, pages 139–144, 2005.
6. R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-

structural databases. In Proc. of PODS, pag. 184–195, 2005.
7. M. Fontoura, V. Josifovski, R. Kumar, C. Olston, A. Tomkins, and S. Vassilvitskii.

Relaxation in text search using taxonomies. Proc. of VLDB, 1(1): 672–683, 2008.
8. N. Koudas, C. Li, A. K. H. Tung, and R. Vernica. Relaxing join and selection

queries. In Proc. of VLDB, pag. 199–210, 2006.
9. Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A generic natural language search

environment for XML data. TODS 32(4): art. 30, 2007.
10. D. Martinenghi and R. Torlone. Querying Context-Aware Databases. In Proc. of

FQAS, pag. 76–87, 2009.
11. X. Zhou, J. Gaugaz, W. Balke, and W. Nejdl. Query relaxation using malleable

schemas. In Proc. of SIGMOD, pag. 545–556, 2007.

