
TRE
R O M A

DIA

Università degli Studi di Roma Tre
Dipartimento di Informatica e Automazione
Via della Vasca Navale, 79 – 00146 Roma, Italy

How Stable is Stable in Interdomain
Routing: Efficiently Detectable
Oscillation-Free Configurations

Luca Cittadini1, Giuseppe Di Battista1, and Massimo Rimondini1

RT-DIA-132-2008 July 2008

(1) Dipartimento di Informatica e Automazione,
Università di Roma Tre,

Rome, Italy.
{ratm,gdb,rimondin}@dia.uniroma3.it

This work is partially supported by the Italian Ministry of Research, Grant number RBIP06BZW8, FIRB
project “Advanced tracking system in intermodal freight transportation”.

ABSTRACT

Internet Service Providers have at their disposal a powerful policy-based protocol for enforcing a fine
grained control of Interdomain Routing: the Border Gateway Protocol. However, the price to pay for
the flexibility of BGP is the lack of convergence guarantees. In this paper, we study the stability of
BGP configurations. Namely, we tackle the problem of deciding if, given the policy configurations, the
routing will converge to a stable state or if there is the potential chance of persistent oscillations. First,
we extend the currently largest known class of stable configurations that can be efficiently detected. This
is done with a simple algorithm that relies on new properties of policy-based protocols that are shown to
be independent on any specific message timing. Second, we provide a sufficient condition to guarantee
the absence of potentially persistent oscillations in the routing. We show that this condition is less
constraining than currently known ones. Finally, we assess the ability of existing models of policy-based
protocols to capture routing oscillations, showing that different models put in evidence different types of
oscillations. We prove that all our results are valid even in the most general model.

2

1 Introduction

Internet Service Providers have at their disposal a powerful policy-based protocol for enforcing a fine
grained control of Interdomain Routing: the Border Gateway Protocol (BGP). However, the price to
pay for the flexibility of BGP is the lack of convergence guarantees. In fact, a BGP configuration may
oscillate forever, never reaching a stable state. This can happen either because a stable state for that
configuration does not exist at all or because, even if a stable state exists, the system gets trapped into
bad event timings.

Changes in interdomain routing are likely to cause performance degradation or even packet loss [26].
Even worse, continuous changes can severely affect the availability of services. For this reason, the
stability of interdomain routing has been the subject of several studies.

The existence of persistent routing oscillations caused by an autonomous route selection process was
first studied in [25], where Varadhan et al. discuss how to achieve stability by applying constraints on
routing policies.

A number of results, which most of subsequent research efforts regarded as fundamental, have been
proposed in a group of papers by Griffin et al. [11, 8, 13, 9]. The main achievements of those papers are:
(i) A framework, called the Simple Path Vector Protocol (Spvp), to model the dynamics of path vector
protocols. (ii) A static formalism, called the Stable Path Problem, to study BGP routing stability. (iii)
A proof of NP-completeness for the Stable Path Problem. (iv) An efficient algorithm to compute a stable
state in a greedy manner. (v) A sufficient condition for guaranteed routing convergence to a stable state
based on the absence of cyclic structures, called dispute wheels, in the policy configurations.

Thanks to its generality, that sufficient condition has been widely exploited in the literature. Gao et
al. [7, 6] defined guidelines on routing policies that, if obeyed, guarantee the convergence. The guidelines
impose that preferences on routing paths are based on the commercial customer-provider relationships
between Autonomous Systems. In [6] the authors show that enforcing those constraints implies the
absence of dispute wheels.

Jaggard et al. focused in [15] on the more general case in which route preferences are assigned to classes
of neighbors. They provide a centralized and a distributed algorithm that efficiently verify convergence
by checking the possible presence of dispute wheels.

In [5] Feamster et al. provide conditions for convergence for the case in which ISP’s can autonomously
choose to filter out paths. They propose a sufficient condition that is again based on the absence of
dispute wheels and a necessary condition that is based on the absence of a special subclass of dispute
wheels called dispute rings.

The stability of path vector protocols has also been studied using an approach based on algebraic
models in [24, 23, 10, 18]. These works describe convergence conditions that are based on properties of
path rankings, and confirm that the no dispute wheel condition finds a counterpart also in the algebraic
model. In particular, in [10] the authors propose a relaxation of the guidelines of [7].

In [17] Chau takes into account the general case in which routing policies allow for non-strict path
rankings. Even in this case, the absence of dispute wheels is fundamental to guarantee convergence.

Several works [12, 14, 1, 20, 16, 21] focused on oscillations induced by IBGP configurations. They
show how instabilities can arise from improper setup of route reflectors [2] or wrong configuration of
MED [22] values, and that checking for the existence of stable states in IBGP is NP-hard [12, 1]. It
has also been shown in [14, 16, 21] how the Stable Path Problem formalism and the no dispute wheel
condition can be used to study the convergence of IBGP.

Other approaches focused on modifications to BGP that prevent route oscillations from happening.
For this purpose, in [4] a global precedence metric is introduced to track the behavior of dispute wheels.
The global precedence is used to neutralize those dispute wheels that are actually causing permanent
oscillations. Cobb et al. [3] prevent instabilities by imposing consistency constraints on the routing paths
that can be selected.

Our contributions can be summarized as follows.
First, we discuss the models to be adopted for studying oscillations. Many of the papers discussed

above adopt the Spvp model from [8, 13], either in its original version or with some variations. We argue
that the differences among those models impact their ability to capture routing oscillations. In particular,
we point out that none of the features of the original version of Spvp can be omitted without missing
some classes of oscillations. Hence, we adopt that model for our study.

Second, we propose a deterministic greedy algorithm that efficiently checks whether a BGP system is
guaranteed to converge to a stable state. We prove that our algorithm is able to verify the guaranteed

3

convergence of a set of instances that is strictly larger than those that are verified by the greedy algorithm
in [9].

Finally, we prove that a sufficient condition to prevent routing oscillations is the absence of a special
subclass of dispute wheels which we call Steady Spoke Dispute Wheels. This sufficient condition is less
constraining than the widely used no dispute wheel condition presented in [8].

The rest of the paper is organized as follows. Section 2 introduces the notation and discusses the
variants of Spvp. In Section 3 we formally define the concept of routing oscillation and choose the
model. Our algorithm is described in Section 4 and analyzed in Section 5. Conclusions are drawn in
Section 6, where directions for future work are also discussed.

2 Models for Policy-Based Path Vector Routing Protocols

Several models have been proposed in the literature [8, 7, 13, 25, 6, 9, 1, 3, 5] to capture the dynamic
behavior of path vector protocols, with special interest to BGP. In this section we propose a taxonomy
of existing approaches and introduce the model that we use throughout the paper.

Let G = (V,E) be a simple undirected graph with vertex set V = {0, 1, . . . , n} and edge set E. A
path P in G is either the empty path, denoted by ε, or a sequence of k+ 1 vertices P = (vk vk−1 . . . v0),
vi ∈ V such that (vi, vi−1) ∈ E for 0 < i ≤ k. Vertex vk−1 is the next hop of vertex vk in P . If k = 0
then (v0) is a path consisting of a single vertex v0, which we call a trivial path. The concatenation of two
nonempty paths P = (vk vk−1 . . . vi), k ≥ i, and Q = (vi vi−1 . . . v0), i ≥ 0, denoted as PQ, is the
path (vk vk−1 . . . vi vi−1 . . . v0). We assume that Pε = εP = ε.

Each vertex v ∈ V is assigned a set of permitted paths Pv. All these paths start from v and end in 0
and represent the paths that v can use to reach 0. Let P0 = {(0)} and let P =

⋃
v∈V Pv.

For each vertex v ∈ V , a ranking function λv : Pv → N determines the relative level of preference
λv(P) assigned by v to path P . If P1, P2 ∈ Pv and λv(P2) < λv(P1), then P2 is said to be preferred over
P1. Let Λ = {λv|v ∈ V }.

We also assume that, for each vertex v ∈ V − {0}, the following conditions hold on the paths:

i. ε ∈ Pv;

ii. ∀P ∈ Pv with P 6= ε: λv(ε) > λv(P);

iii. ∀P1, P2 ∈ Pv, P1 6= P2 : λv(P1) = λv(P2) ⇒ P1 = (v u)P ′1, P2 = (v u)P ′2, i.e., v has the same next
hop in P1 and in P2; and

iv. ∀P ∈ Pv: P is a simple path (i.e., has no repeated vertices).

Assuming that the empty path represents unreachability of 0, Condition i states that all vertices but
0 may be unable to reach the destination. Unreachability is considered as the last chance for a vertex
(Condition ii). Condition iii states that function λv induces a total order on all the paths of Pv, with
the exception of those paths that begin with the same pair of vertices. Such paths reach 0 via the same
neighbor of v, and can therefore be considered equivalent. Condition iv accounts for the inexistence of
cycles in the routing.

We now define a distributed asynchronous algorithm which is intended to model the dynamic behavior
of path vector protocols, with particular reference to BGP [22]. The algorithm was first introduced
in [8, 13] under the name of Simple Path Vector Protocol (Spvp).

An instance S of Spvp is defined by a t-uple S = (G,P,Λ), where G = (V,E) is a graph, P is the set
of permitted paths, and Λ is the set of ranking functions. Figures 1a and 1b show two instances of Spvp.
The graphical convention we use in these figures will be adopted throughout the paper. Namely, each
vertex v is equipped with a list of paths representing Pv sorted by increasing values of λv. The empty
path and P0 are omitted for brevity.

The size of an instance of Spvp is the sum of the sizes of the sets of paths of P. In fact, we can
remove from G all vertices and edges that are not in at least one of these paths.

Observe that an instance of Spvp provides a good abstraction of an interdomain routing system. In
fact, vertices can be mapped to Autonomous Systems, edges can be interpreted as peering sessions, and
permitted paths, together with the rankings, can represent routing policies.

In Spvp, every vertex attempts to establish a path to 0 relying on the paths used by its neighbors.
In order to achieve this, vertices exchange messages containing permitted paths to 0. We assume that

4

210

20

420

430

3420

30

130

10 2

43

0

1

(a)

10

120 210

201 2

0

(b)

Figure 1: Two interesting instances of Spvp. (a) Bad Gadget: This instance does not admit any stable
state. (b) Disagree: In this instance oscillations are only possible in a model that allows simultaneous
activations.

process spvp(v)
1: while receive P from u do
2: rib-int(v ⇐ u) := P
3: ribt(v) := bestt(v)
4: if ribt(v) 6= bestt−1(v) then
5: for all v ∈ peers(v) do
6: send ribt(v) to v
7: end for
8: end if
9: end while

Figure 2: Algorithm Spvp.

message exchanges are reliable and edges introduce an arbitrary finite delay. Communication between
vertices takes place in a totally asynchronous way.

To introduce Spvp we need a few more definitions. We denote the set of neighbors of v by peers(v).
Two data structures are used at each vertex v to represent the information v is aware of at time t: the
path ribt(v) that is used to reach 0 and a table rib-int(v ⇐ u) that stores the latest path received from
neighbor u ∈ peers(v). Thus, vertex v can select a path to 0 among the choices available in

choicest(v) = {(v u)P ∈ Pv | P = rib-int(v ⇐ u)}

Let W be a subset of the permitted paths Pv at vertex v, such that each path in W has a distinct
next hop. Then the best path at v in W is

best(W, v) =

{
P ∈W |P = arg min λv(P) (W 6= �)

ε (W = �)

and the overall best path v is aware of at time t is bestt(v) = best(choicest(v), v).
Algorithm Spvp is in Fig. 2. Each vertex v ∈ V executes an instance of Spvp. When a vertex v

receives a path P from one of its neighbors u, it stores P in the local data structure rib-int(v ⇐ u) and
recomputes its best path. If the computed best path P differs from the previous one, u sends a message
containing P to all of its neighbors.

A path assignment is a function π that maps each vertex v ∈ V to a path π(v) ∈ Pv. We have that
π(0) = (0) and, if π(v) = ε, then v cannot reach vertex 0. In the following, we will refer to π as the state
of the Spvp instance. Observe that, at any time t, the algorithm in Fig. 2 defines a path assignment πt

where πt(v) = ribt(v) and each vertex always selects the best available path.
We now discuss different possible variants of Spvp that can affect its dynamic evolution.

2.1 Edge and Vertex Activations and Activation Sequences

An activation is informally defined as the action of triggering a new computation of the best path on
some vertices of an Spvp instance. Depending on the mechanism used to trigger the computation, we
distinguish between edge and vertex activations.

5

We say that an edge (u, v) is activated at time t from u to v if v executes the algorithm in Fig. 2 to
process the latest message received from u. Edge activations are considered in [13, 6, 9, 25, 3].

The semantic of a vertex activation may be twofold. We say that a vertex v is activated to process
at time t if v executes the algorithm in Fig. 2, assuming that a message is simultaneously received from
every vertex u in peers(v). Vertices are activated to process in [1, 8, 7, 5].

On the other hand, to complete the taxonomy of the models, it is quite natural to consider vertex
activation from the opposite perspective. We say that a vertex v is activated to send at time t if v runs
a slightly modified variant of the algorithm in Fig. 2. In this variant v first sends its current best path
ribt(v) to all its neighbors (Steps 5-7 of Spvp), which are supposed to receive ribt(v) simultaneously.
Then, for every vertex u ∈ peers(v), a recomputation of the best path is triggered (Steps 2, 3 of Spvp).

An activation sequence is used to represent the order in which messages are exchanged in an Spvp
instance. This order needs not to be total, i.e., at a given instant more than one edge can be traversed
by messages. Similarly to the case of activations, we distinguish between edge activation sequences and
vertex activation sequences. An edge activation sequence σe is a (possibly infinite) sequence of sets
σe = (A0 A1 . . . Ai . . .) in which each set At contains an ordered pair (u, v) ∈ E for each edge (u, v)
that is activated at time t. A vertex activation sequence is a sequence σv = (A0 A1 . . . Ai . . .) in which
each set At contains a vertex v ∈ V for each vertex v that is activated at time t.

Observe that vertex activation sequences are special classes of edge activation sequences in which
constraints are applied on the sequence of activated edges. An activation sequence where vertices are
activated to send can be mapped to an edge activation sequence in which each vertex activation Ai = v
corresponds to a sequence of activations Aik

= (v, uk) for each uk ∈ peers(v). A similar argument applies
to an activation sequence where vertices are activated to process. In the latter case, pairs Aik

= (uk, v)
are activated for each vertex activation Ai = v.

2.2 Modeling Memory at Vertices

Another possible variant of the basic Spvp model is the one in which there is no rib-int [25, 3, 5].
In this case, each vertex v only stores its current best path and computes its new best paths directly
referring to the best choices of its neighbors. Set choicest(v) would then be redefined in the following
way: choicest(v) = {(v, u)P ∈ Pv|P = bestt−1(u)}.

Consider that, if vertices are activated to process, there is no need to consider a rib-int. In fact,
every time a vertex v ∈ V is activated, it immediately refreshes choicest(v), thus replacing any previously
known path.

On the other hand, the absence of rib-int forces a vertex to query all its neighbors for each computation
of a new best path. This corresponds to activating vertices to process. As an alternative, the absence
of a rib-int can be compensated by forcing vertices to continuously send update messages, for example
exploiting a timeout [3].

2.3 Simultaneousness

As a further degree of freedom, we distinguish between models that admit the simultaneous activation of
multiple entities (i.e., |Ai| ≥ 1) [1, 8, 7, 25, 3] and models that only allow a single entity to be activated
at a time [5] (i.e., |Ai| = 1). Some authors, e.g. [13, 6, 9], enforce simultaneousness by equipping the
model with message queues.

2.4 Choosing a model

Throughout the paper we will consider the original version of Spvp in which edges are activated, a
local rib-int is maintained by each vertex, and simultaneous activations are allowed. Tab. 1 shows a
classification of previously adopted models along the dimensions we analyzed.

3 Stable States and Infinite Oscillations

In this section we formally define the concept of routing oscillation and we show that the variant of Spvp
that we choose to consider cannot be simplified along any dimension without impacting the ability of the
model to capture oscillations.

6

Activations RIB Simult.
[13, 6, 9] Edges Yes Yes
[5] Vertices, to process No No
[25, 3] Edges No Yes
[1, 8, 7] Vertices, to process Yes Yes

Table 1: A taxonomy of existing models for path vector protocols.

t At 1 2
1 {(0, 1), (0, 2)} (1 0) (2 0)

2 {(1, 2), (2, 1)} (1 2 0)
(1 0)

(2 1 0)
(2 0)

3 {(1, 2), (2, 1)} (1 0) (2 0)

Table 2: An oscillating fair edge activation sequence for Disagree (Fig. 1b). The columns of the table
are the time instants, the set of activated edges, and the rib-int of each vertex, with the currently selected
best path highlighted in italic face.

For the sake of clarity, in the following we will specify activation sequences using a tabular notation
as in Tab. 2, where each row corresponds to an activation, the first column specifies activated vertices or
edges, and the remaining columns represent the current rib-int at each vertex, with the currently selected
best path highlighted using italic face. The initial state is assumed to be π0(v) = ε ∀v ∈ V − {0}.

We say that an activation sequence is fair [9] if, whenever vertex u sends a message at time t (Step 6
of Spvp), there exists a time t′ > t at which the message is delivered and processed by its recipient. In
a model with edge activations, this corresponds to saying that edge (u, v) is eventually activated when u
sends a message to v. In a model where vertices are activated to process (to send), this corresponds to
saying that vertex v (u) is eventually activated when u sends a message to v ∈ peers(u).

A specific execution of Spvp is called a run, and it induces a sequence of path assignments (π0 π1 . . . πt . . .)
which we call its trace. While the Spvp algorithm is inherently non-deterministic, a single run can be
studied in a deterministic way by looking at the activation sequence associated with the run. A run is
fair if the associated activation sequence is fair.

A state πt′ of an Spvp instance is a stable state if ∀v ∈ V : πt(v) = πt′(v) for any t > t′. For example,
two stable states for Fig. 1b are described in Tab. 3.

On the contrary, there are renowned Spvp instances that do not have any stable state (see Fig. 1a [11,
9]). Therefore it is interesting to study the following problem, known as the Stable Path Problem [9]:

Problem 3.1. Given an instance S = (G,P,Λ), does it admit a stable state?

A stable state in S, if any, is a solution to Problem 3.1.

Theorem 3.1. Problem 3.1 is NP-complete [11, 9].

Observe that, as also remarked by [11, 9], searching for the existence of a stable state hides another
issue, i.e., even if a stable state exists, routing protocols can get trapped: consider, for instance, Fig. 1b.
As Tab. 2 highlights, a routing protocol can oscillate forever on that instance. We believe that network
operators are much more concerned with the existence of a “potential” divergence condition that, despite
the existence of a stable state, could prevent a network from operating correctly. In order to address this
problem, we formally define the concept of a routing oscillation.

We say that an instance of Spvp exhibits an oscillation if there exists an activation sequence inducing
a trace in which πt′(v) = πt′′(v) ∀v ∈ V , where t′′ > t′. In fact, since the two states at times t′ and
t′′ are equal, the portion of activation sequence At′ . . . At′′ could be repeated indefinitely, generating an

vertex 0 1 2
stable state 1 (0) (1 0) (2 1 0)
stable state 2 (0) (1 2 0) (2 0)

Table 3: Two distinct stable states for Disagree (Fig. 1b).

7

2430

240

210

230

3210

30

430

4230

40

10

1240

2 3

4

1 0

(a)

230

210

20

320

30

102

3

1

0

(b)

Figure 3: (a) Bleedin-Edge: An instance of Spvp for which a fair oscillation exists only in the edge
activation model. (b) Di-safe-gree: A modified Disagree that has a unique guaranteed solution.

t At 1 2 3 4
1 {(0, 1), (0, 3), (0, 4)} (1 0) ε (3 0) (4 0)
2 {(3, 2)} (1 0) (2 3 0) (3 0) (4 0)

3 {(2, 4), (4, 2)} (1 0)
(2 4 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

4 {(1, 2), (2, 1)} (1 2 4 0)
(1 0)

(2 4 0)
(2 1 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

5 {(4, 2)} (1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 0)
(4 2 3 0)
(4 0)

6 {(2, 3)} (1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

7 {(3, 4), (4, 3)} (1 2 4 0)
(1 0)

(2 1 0)
(2 3 0)

(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

8 {(1, 2), (3, 2), (4, 2)} (1 2 4 0)
(1 0)

ε
(3 2 1 0)
(3 0)

(4 2 3 0)
(4 0)

9 {(2, 1), (2, 3), (2, 4)} (1 0) ε (3 0) (4 0)

Table 4: An oscillating fair edge activation sequence for Bleedin-Edge (Fig. 3a).

infinite activation sequence σ′. If σ′ is fair, we say that the instance admits a fair oscillation. We argue
that, in real-world protocols, it is unlikely for some messages to be never delivered and processed. Hence,
throughout the paper we will focus only on fair oscillations. An Spvp instance is safe if it does not admit
any fair oscillations.

Let Spvp-ns be a variation of Spvp that does not allow simultaneous activations. The following
theorem shows that relaxing Spvp by not considering simultaneous activations impacts the capability of
the model to capture oscillations.

Property 3.1. Spvp captures any oscillation captured by Spvp-ns. The converse does not hold.

Proof. Trivially, non-simultaneous activation sequences can always be mapped to simultaneous edge acti-
vation sequences. On the other hand, Disagree (Fig. 1b) provides an example in which simultaneuosness
is needed to trigger an oscillation. Let e ∈ {(1, 2), (2, 1)} be the first edge that is activated, at time t,
between vertices 1 and 2. Note that the activation of edge e = (u, v) can only be triggered by a previous
activation of edge (0, u). This, in turn, implies that path (u 0) ∈ choicest(u). Hence, after activating e,
(v u 0) enters choicest(v), that forces bestt(v) = (v u 0). Since this leads to any one of the two stable
states described in Tab. 3, any further activation has no effect. By contrast, Tab. 2 shows that Disagree
admits a fair oscillation if simultaneous activations are allowed.

We already observed in Section 2 that edge activation sequences are more general than vertex activa-
tion sequences, regardless of the semantic of the activation of a vertex. Theorem 3.2 shows that relaxing
Spvp by not considering the activation of single edges impacts the capability of the model to capture
oscillations. To prove the theorem we need the following preliminary lemmas that exploit the instance
Bleedin-Edge in Fig. 3a.

Let Spvp-vp (Spvp-vs) be a variation of Spvp in which vertices are activated to process (to send).

Lemma 3.1. Consider the Spvp instance Bleedin-Edge. Independently on the activation sequence, if
path (1 0) enters choicest′(1) at time t′, then (1 0) ∈ choicest(1) ∀t ≥ t′. The same also holds for paths
(4 0) and (3 0).

8

vertex 0 1 2 3 4
stable state (0) (1 0) (2 4 3 0) (3 0) (4 3 0)

Table 5: A stable state for Bleedin-Edge (Fig. 3a).

Proof. The statement follows from P0 = {(0)}.

Lemma 3.2. Consider the Spvp instance Bleedin-Edge. If vertices are activated to send, no vertex
activation sequence and no time t exist such that πt(4) = (4 2 3 0).

Proof. For vertex 4 to select (4 2 3 0) it is required that 2 selects (2 3 0) first, which in turn requires
vertex 3 to be activated at least once. Now, once 3 is activated, vertex 4 can immediately select its best
path (4 3 0), and will be unable to select (4 2 3 0) in further steps. Even if we assume that there exists a
time instant t such that the rib-int at vertex 4 already contains (4 2 3 0), we need 3 to withdraw (3 0),
which is preferred at 4. Since, by Lemma 3.1, vertex 3 cannot withdraw (3 0) by announcing ε, then 3
must announce (3 2 1 0), which can only happen if 2 picks (2 1 0) as its best and is activated beforehand,
thus actually removing (4 2 3 0) from the rib-int of vertex 4.

Lemma 3.3. Consider the Spvp instance Bleedin-Edge. If vertices are activated to process, no vertex
activation sequence allows vertex 4 to select (4 2 3 0) at any time t.

Proof. We prove the assertion by contradiction. Let t be the first time at which vertex 4 selects (4 2 3 0).
This implies πt−1(2) = (2 3 0) and πt−1(3) = (3 2 1 0). In fact, by Lemma 3.1, vertex 3 can never announce
ε after its first activation, and πt−1(2) = (2 3 0) implies that 3 was already activated before time t − 1.
Let t′ < t and t′′ < t be the instants of the last activation, before t, of vertices 2 and 3, respectively. If
t′ < t′′, vertex 3 would be unable to select path (3 2 1 0), contradicting πt−1(3) = (3 2 1 0). On the other
hand, if t′′ < t′, vertex 2 would be unable to select path (2 3 0). Then it must be t′ = t′′, i.e., vertices
2 and 3 were activated simultaneously. This, in turn, implies πt′−1(2) = (2 1 0), πt′−1(1) = (1 2 4 0)
and πt′−1(3) = (3 0). Note that, by Lemma 3.1, it cannot be πt′−1(1) = ε, as πt′−1(2) = (2 1 0).
Moreover, since activating vertex 2 at t′ will result in πt′(2) = (2 3 0), we must have πt′−1(4) 6= (4 3 0)
and πt′−1(4) 6= (4 0). This means that πt′−1(4) can be either ε or (4 2 3 0). The former case contradicts
Lemma 3.1, since πt′−1(1) = (1 2 4 0) implies that 4 was activated before t′−1. The latter one contradicts
the hypothesis of t being the first time at which 4 selects (4 2 3 0).

Theorem 3.2. Spvp captures any oscillation captured by Spvp-vs and by Spvp-vp. The converse does
not hold.

Proof. We already noted that edge activation sequences are at least as powerful as vertex activation
sequences. Bleedin-Edge proves the strictness. In fact, Tab. 4 shows an edge activation sequence
that triggers a fair oscillation on that instance. Observe that the states at instants t = 1 and t = 9
coincide and each edge is activated at least once in that time interval (fairness). We now prove that
vertex activation sequences always converge on Bleedin-Edge. Lemma 3.2 and Lemma 3.3 ensure that
∀t πt(4) 6= (4 2 3 0), regardless of the semantic of vertex activation. Moreover, Lemma 3.1 implies that
there exists a time t0 such that ∀t > t0 πt(4) 6= ε. Hence, ∀t > t0, πt(4) must be either (4 0) or (4 3 0).
Observe that both these paths are extended by vertex 2. Hence, there exists a time instant t1 such that,
for any t > t1: πt(2) = (2 4 3 0) or πt(2) = (2 4 0). In particular, we have πt(2) 6= (2 1 0) which, in turn,
implies the existence of a t2 > t1 such that πt(3) = (3 0) for any t > t2. As a consequence, there will be
a time t3 > t2 such that πt(4) = (4 3 0) for any t > t3. This prevents 2 from selecting path (2 4 0) and
therefore ultimately stabilizes 1 on πt(1) = (1 0) for any t > t4 > t3.

We complete our discussion on the ability of the variations of Spvp to capture oscillations with
the following theorem, that puts in evidence the importance of considering rib-int. Let Spvp-nr be a
variation of Spvp that does not equip vertices with a rib-int.

Theorem 3.3. Spvp captures any oscillation captured by Spvp-nr. The converse does not hold.

Proof. As we already remarked in Section 2, the absence of rib-int forces a vertex to query all its neighbors
for each computation of a new best path. This corresponds to activating vertices to process, hence the
statement can be proved in a way similar to Theorem 3.2.

9

4 A New Greedy Algorithm

In this section we first briefly recall a greedy algorithm (we call it Greedy) that has been proposed in [9]
to solve an Spvp instance. Second, we propose a new greedy algorithm, called Greedy+. Finally, we
compare Greedy and Greedy+.

Algorithm Greedy attempts to grow a solution by iteratively building a stable path assignment. If
the algorithm terminates successfully, the path assignment defines a spanning tree that is a solution for
the given instance. Otherwise, the greedy algorithm is only able to identify a stable path assignment for
a subset of the vertices.

The algorithm maintains a stable set of vertices for which convergence is guaranteed. The stable set
at iteration i of the algorithm is denoted by Vi. Vertex 0 is always in the stable set, therefore we set
V0 = {0}. As the stable set grows, a path assignment π defined on the vertices in Vi is iteratively built.

We say that a path P is compatible with a path assignment π if P = P ′(u v)π(v), where P ′ does not
contain vertices in Vi, (u, v) ∈ E, and v ∈ Vi.

Algorithm Greedy is as follows. At iteration i, let Pv be the path with minimum λv(P) among the
paths at v compatible with π. If such a path does not exist, let Pv = ε. If there exists a vertex v /∈ Vi−1

such that Pv has a next hop in Vi−1, then construct Vi by adding v to Vi−1 and set π(v) = Pv. If such a
vertex v does not exist, then stop.

Intuitively, at each iteration, vertex v is stabilized because its best compatible path directly reaches an
already stabilized vertex. Observe that the algorithm terminates after at most |V | iterations. A solution
to the Spvp instance exists if, after k iterations, Greedy ends with Vk = V . The solution is given by
the stable path assignment π.

Note that the description of Greedy we propose here slightly differs from the one in [9], in that we
require that only a single vertex enters the stable set at each iteration. We will explain in the following
that this modified version is indeed equivalent to the original algorithm. We choose to describe Greedy
with this slight modification in order to better introduce the improvements that allow us to overcome
some shortcomings of the original algorithm.

Greedy can fail to find a solution even if Spvp is guaranteed to converge. Consider, for example, the
instance Di-safe-gree in Fig. 3b. It can be easily verified that any fair activation sequence of Spvp on
this instance is finite. In fact, any fair activation sequence is such that vertices 1, 2, and 3 learn about the
direct path to 0. After that, pair (1, 2) is eventually activated, and 2 learns about (2 1 0). Henceforth,
vertex 2 will permanently be unable to select (2 0), in turn preventing vertex 3 from choosing (3 2 0).
Finally, after pair (3, 2) is activated, 2 switches to its best path (2 3 0) and Spvp terminates, as no other
message is further generated. Therefore any fair activation sequence is forcedly finite, and this implies
that Spvp cannot oscillate on this instance.

We will now walk through the execution of Greedy on Di-safe-gree. At the first iteration, vertex
1 enters the stable set V1, and π(1) = (1 0). At the second iteration, the algorithm forcedly stops. In
fact, path (2 3 0) is compatible with π because 2, 3 /∈ V1, 0 ∈ V1, and (3 0) ∈ E. However, even if (2 3 0)
is the best compatible path at vertex 2, its next hop is not in V1. A similar argument applies to path
(3 2 0). Therefore, no new vertex can be added to the stable set and the algorithm stops without finding
a solution, since V1 6= V .

We now describe a variant of this algorithm, which we call Greedy+. This variant is able to solve
Di-safe-gree.

We say that a path P belonging to a set S of paths is consistent with S if either P = ε, P = (0), or
P = (v u)P ′ where (v, u) ∈ E and P ′ is consistent with S. For example, let S = {(0), (1 0), (2 1 3 0)}: it
is easy to check that (0) and (1 0) are consistent with S, while (2 1 3 0) is not. Further, for each vertex
v we define a set P̄v of paths called useful set. The useful set P̄v is initialized with the paths in Pv that
are consistent with P. Let P̄ =

⋃
v∈V P̄v.

Greedy+ differs from Greedy in that it exploits the useful set in order to prune paths that, starting
from a certain iteration, become permanently unavailable. Hence, Greedy+ needs to keep the useful set
up to date at each iteration.

What follows is a description of Greedy+. Let V0 = {0}. At iteration i, Greedy+ performs the
following steps:

i) Exploit the current stable set in order to prune all those paths that cannot be selected because
of the presence of a better ranked path offered by a neighbor in the stable set. For each vertex
v ∈ V − Vi−1 such that v has a neighbor u ∈ Vi−1 and there exists a path P = (v u)P ′ such that

10

i Vi Ci P̄1 P̄2 P̄3

0 {0} {1} (1 0)
(2 3 0)
(2 1 0)
(2 0)

(3 2 0)
(3 0)

1 {0, 1} {3} (1 0) (2 3 0)
(2 1 0) (3 0)

2 {0, 1, 3} {2} (1 0) (2 3 0) (3 0)
3 V � (1 0) (2 3 0) (3 0)

Table 6: A successful execution of Greedy+ on Di-safe-gree (Fig. 3b). The table shows sets Vi, Ci,
P̄v at iteration i of Greedy+.

{P ′} = P̄u, remove from P̄v all the paths Q such that λv(Q) > λv(P). Intuitively, this step is
performed because P will be always available at v.

ii) Enforce consistency on all the paths. For each vertex v /∈ Vi−1, remove from P̄v all the paths that
are not consistent with P̄.

iii) Grow the stable set, or stop. Let Ci ⊂ V − Vi−1 be the set of candidate vertices v such that the
path P ∈ P̄v with minimum λv(P) either has a next hop in Vi−1, or P = ε. If Ci = �, then set
Vi = Vi−1 and stop. Otherwise, if Ci 6= �, then pick a vertex u ∈ Ci, construct Vi by adding u to
Vi−1, and set P̄u = {P}.

If Greedy+ stops after k iterations, its output consists of a stable set Vk and sets P̄v ∀v ∈ V , with
|P̄v| = 1 ∀v ∈ Vk. If Vk = V , Greedy+ computes a stable path assignment π for the input instance such
that P̄v = {π(v)} ∀v ∈ V .

An example of a successful execution of Greedy+ on Di-safe-gree is shown in Tab. 6. Note that at
iteration 1 path (2 0) is evicted from P̄2 because (2 1 0) is preferred and permanently available (Step i)).
This action puts in evidence the difference between Greedy+ and Greedy: in fact, it is easy to check
that Greedy would have stopped at iteration 1. Step ii) then removes (3 2 0) from P̄3 since it is
inconsistent with P̄. This allows vertex 3 to enter the stable set.

Theorem 4.1. Let n be the size of an Spvp instance S. Greedy+ can be implemented to terminate on
S in time that is polynomial in n.

Proof. A trivial bound follows.
Step i) of Greedy+ applies to those vertices v which extend a path P offered by some neighbor u in

the stable set. This step can be implemented by evaluating λv for all the paths in each P̄v and comparing
its value with λv((v u)P). This takes O(n3) time, since the length of a path is O(n).

Step ii) of Greedy+ enforces consistency. This can be accomplished by comparing each path in P̄
with all the others, which takes O(n3).

Finally, at Step iii) of Greedy+ candidate vertices can be found in O(n3) time.
Since Greedy+ executes at most |V | iterations and an instance of Spvp can have O(n) vertices,

Greedy+ can be implemented to run in O(n4) time.

The following properties and Lemma 4.1 show that Greedy+ is deterministic in the sense that, at
any time where multiple choices are possible, performing any of them does not alter the output.

Property 4.1. If Greedy+ terminates after k iterations, its output is completely defined by sets Vk

and P̄v ∀v ∈ Vk.

Proof. The missing portion of the output, P̄v ∀v ∈ V − Vk, can be uniquely constructed starting from
Vk and P̄v ∀v ∈ Vk. Consider a new instance S′ = (G′,P ′,Λ′) of Spvp with G′ = G, Λ′ = Λ, and, for
any v ∈ V :

P ′v =
{
P̄v if v ∈ Vk

Pv if v /∈ Vk
.

Now, initialize the stable set V0 to Vk and execute Steps i) and ii) of Greedy+ on S′. We now show
that, after doing so, P̄ ′v = P̄v, ∀v ∈ V . This is trivially true for vertices u ∈ Vk, as no path is ever

11

removed from P̄ ′u. Observe that the outcome of Step i) of Greedy+ only depends on the topology of
the graph G′, the ranking functions Λ′, and the sets of useful paths P̄ ′v, with v ∈ Vk. Because of the
way S′ has been defined, we know that, at Step i), a path is removed from P̄v iff it is removed from P̄ ′v.
Hence, any possible difference must be due to Step ii).

We prove by contradiction that the output coincides also for vertices in V − Vk. Suppose that this
is not the case, i.e., there exists some vertex v ∈ V − Vk such that P̄ ′v 6= P̄v. Then, there exists a path
P such that either P /∈ P̄ ′v ∧ P ∈ P̄v or P ∈ P̄ ′v ∧ P /∈ P̄v. In the first case, the execution of Step ii)
on S′ has removed from P̄ ′v a path that the execution of Greedy+ on S regarded as consistent. But
this is impossible, since ∀v ∈ V , P̄v ⊆ P ′v, so there can be no path that is consistent with P̄ and is
not consistent with P ′. In the second case, the execution on S has removed from P̄v a path P that the
execution on S′ considered as consistent. Since it cannot be P /∈ Pv, then for P to be inconsistent with P̄,
it may only be the case that P = (v . . . u)Pu, where Pu /∈ P̄u and Pu ∈ P̄ ′u. In turn, this is only possible
if there exists a path Pw such that Pu = (u . . . w)Pw, with Pw /∈ P̄w and Pw ∈ P̄ ′w. By proceeding this
way, we must eventually end up on a vertex x in Vk, possibly 0. By recalling that P̄ ′v = P̄v ∀v ∈ Vk by
construction, we have a contradiction in that it should be Px /∈ P̄x and Px ∈ P̄ ′x.

Property 4.2. Consider a path P that is inconsistent with P̄ at iteration i of Greedy+. Then, P is
inconsistent at any iteration j > i.

Proof. The property follows by observing that Greedy+ never adds new paths to P̄.

Property 4.3. At any iteration i of Greedy+, Ci ∩ Vi = Vi − Vi−1.

Proof. By construction, Ci ∩ Vi−1 = �. Now, at iteration i a vertex is picked from Ci and added to Vi−1

to construct Vi. Therefore, the property follows.

The following property states the fact that, once a vertex enters the candidate set, it stays there until
it is eventually moved to the stable set.

Property 4.4. Consider an arbitrary iteration i of Greedy+ and a vertex v ∈ Ci. Then there exists
an iteration j > i such that v ∈ Ch for all i ≤ h ≤ j and v ∈ Vk for all k ≥ j.

Proof. Let v ∈ Ci be a vertex such that the path P ∈ P̄v with minimum λv(P) at iteration i either has
a next hop in Vi−1, or P = ε. Since no better path can enter P̄v during the execution of Greedy+

(Property 4.2) and P has the minimum value of λv among the paths in P̄v that are consistent with P̄, P
can never be removed from P̄v at Step i) of Greedy+. Moreover, if P = ε, by definition P is a consistent
path. Otherwise, if P = (v u)Q, u ∈ Vi−1, {Q} = P̄u, then P will remain consistent with P̄ because its
next hop is u ∈ Vi−1, so P̄u will not be updated after iteration i. Thus, P cannot be removed from P̄v

at Step ii). Overall, starting from iteration i, path P will always be available in P̄v and will always have
the minimum value of λv. In other words, v satisfies the conditions of Step iii) at any iteration k ≥ i,
i.e., v ∈ Ck ∪ Vk.

Since ∀k ≥ i v ∈ Ck ∪ Vk, and Greedy+ only terminates when the candidate set is empty, by
Property 4.3 there must be an iteration j at which v is picked from Cj and added to Vj−1 to construct
Vj . The statement follows by recalling that vertices are never removed from the stable set.

We now show that, if multiple candidates exist at Step iii), the output of Greedy+ is not affected
by the vertex that actually enters the stable set.

Lemma 4.1. Consider an arbitrary iteration j of Greedy+ and a set Cj of vertices satisfying the
criteria of Step iii) at iteration j. The output of Greedy+ does not change, regardless of the choice of
vertex v ∈ Cj performed at iteration j.

Proof. Assume that Greedy+ terminates at iteration k. First of all consider that, by Property 4.1, it is
sufficient to prove the assertion for sets Vk and P̄v with v ∈ Vk. Consider an arbitrary vertex u ∈ Cj .
By Property 4.4, we know that u ∈ Ch for any iteration h ≥ j, until u eventually enters the stable set.
Also, as shown in the proof of Property 4.4, the best path (u v)P , v ∈ Vh is always in P̄u. Therefore,
regardless of the iteration at which u is actually selected, the set P̄u is always updated with path (u v)P .
Moreover, the set of paths that become inconsistent with P̄ after setting P̄u = {(u v)P} does not depend
on the iteration either.

Thus, a vertex u ∈ Ch can be picked by Step iii) at any iteration h of Greedy+ without affecting
neither Vk nor P̄v ∀v ∈ Vk. Since this is true for any vertex u ∈ Ch, Greedy+ can select an arbitrary
candidate vertex at each iteration h without affecting the output.

12

Note that algorithm Greedy+ essentially differs from Greedy because of the presence of Step i). In
fact, if we skip Step i), at each iteration i both the algorithms select the best path among the consistent
ones having a next hop in Vi. This can be easily verified by observing that, when Step i) is removed, the
set P̄ is only used to filter out inconsistent paths.

Therefore, it is easy to check that the validity of Lemma 4.1 can be extended to Greedy by considering
the path assignment π as its output and skipping any consideration about Step i) in the proof of the
lemma. This further confirms that the description of Greedy given in this section and the original
description given in [9] are indeed equivalent.

We now show that Greedy+ is more powerful than Greedy in that it is able to compute a guaranteed
stable state for a strictly larger set of Spvp instances.

Lemma 4.2. Let S be an instance of Spvp. If Greedy terminates on S finding a path assignment π∗,
then Greedy+ also terminates on S finding π∗.

Proof. By Lemma 4.1 we know that, when multiple vertices can enter the stable set at a given iteration,
the solution computed by Greedy+ is independent on the order in which these vertices are considered.
Therefore, we prove the assertion by showing that Greedy+ can find π∗ by selecting vertices to put
in the stable set in the very same order as Greedy does. We show it by mapping each iteration of
Greedy to one iteration of Greedy+. In the following, we will refer to Greedy’s stable set as Vj , and
to Greedy+’s stable set as V +

j , and we will indicate with π the path assignment defined by Greedy
at a given iteration. The proof proceeds by induction on the iteration j. It is trivially true that, at
j = 0, Vj = V +

j = {0}. Assume that Vj−1 = V +
j−1 and, without loss of generality, that the stable

sets have been constructed by adding vertices in the very same order by the two algorithms. Consider
vertex u that Greedy selects at iteration j. This implies that (u v)π(v) is the path with minimum λu

among those compatible with π, for some v ∈ Vj−1. By the induction hypothesis, P̄v = {π(v)}, therefore
path (u v)π(v) is consistent with P̄. We show that path (u v)π(v) must still be in P̄u at iteration j.
Property 4.2 ensures that Step ii) didn’t remove path (u v)π(v) from P̄u. That is, since path (u v)π(v) is
consistent with P̄ at iteration j, it was always consistent during the previous iterations. By the induction
hypothesis, ∀w ∈ Vj−1 P̄w = {π(w)}, therefore all the paths that are regarded as consistent by Greedy+

are necessarily compatible with π. Hence, since (u v)π(v) is a consistent with P̄ and has minimum λu

among the paths compatible with π, it must also have minimum λu among the paths consistent with P̄.
Therefore path (u v)π(v) cannot be deleted at Step i) of Greedy+. Thus, vertex u is a candidate to be
inserted in the stable set by Greedy+.

Since, by Lemma 4.1, the output of Greedy+ is unaffected by the order in which vertices enter the
stable set, we can assume without loss of generality that Greedy+ too selects vertex u at iteration j.
This in turn implies that Greedy+ finds the same path assignment π∗.

Theorem 4.2. The set of instances that Greedy+ can successfully solve is strictly larger than the set
of instances that Greedy is able to solve.

Proof. Lemma 4.2 proves the inclusion. The strictness is supported by Di-safe-gree, which is not solved
by Greedy, as we discussed above, while it is solved by Greedy+ as shown in Tab. 6.

5 Correctness of Greedy+ and a New Condition for Stability

In order to study an instance of Spvp it is useful to look for the presence of gadgets (i.e., portions of the
graph) such that the ranking of permitted paths establishes a circular set of dependencies which cannot
be simultaneously satisfied. In [8] it is shown that the absence of a particular structure, called dispute
wheel, implies the absence of routing oscillations. Further studies stressed the fact that dispute wheels
are a powerful tool to study oscillations in policy-based path vector protocols.

A dispute wheel (see Fig. 4) Π = (~U , ~Q, ~R) is a sequence of vertices ~U = u0, u1, . . . , uk−1 and sequences
of nonempty paths ~Q = Q0, Q1, . . . , Qk−1 and ~R = R0, R1, . . . , Rk−1 such that: (i) Ri is a path from
ui to ui+1, (ii) Qi ∈ Pui , (iii) RiQi+1 ∈ Pui , and (iv) λui(Qi) > λui(RiQi+1).

Subscripts for dispute wheels are to be intended modulo k. We call paths in ~Q spoke paths [15].
As far as we know, all the contributions in the literature that aim at guaranteeing that an instance is

safe, either explicitly require the absence of dispute wheels, or assume constraints that prevent dispute
wheels from being established. In this section we show the correctness of Greedy+, and we exploit the

13

u0

u1uk−1

Rk−1 R0

Q k−1

Q 0

Q1

Q i+1

Q i
ui

R i

ui+1

d

Figure 4: A dispute wheel.

strong relationships between Greedy+ and Spvp to derive a sufficient condition for safety that is strictly
less constraining than the absence of dispute wheels.

Theorem 5.1. Consider an instance S of Spvp and run Greedy+ on S. Let P ∈ Pu be any path that
Greedy+ deletes at iteration j. Then, for any fair run r of Spvp on S, there exists a time t′ such that
∀t > t′, πt(u) 6= P .

Proof. The statement asserts that Greedy+ deletes only those paths that will be discarded by any fair
run of Spvp. The proof is by induction on the iteration j of Greedy+. At iteration j = 1, since P̄v = Pv

for all v ∈ V , Greedy+ deletes a path P from P̄u at either Step i) or Step ii) according to the following
conditions.

Deletion at Step i): Since V0 = {0}, it takes place if λu((u 0)) < λu(P). By the fairness of r, there
must exist a time t′ such that ∀t > t′: (u 0) ∈ choicest(u), thus preventing u from selecting P after t′.

Deletion at Step ii): It takes place if P is inconsistent with P, i.e., P = Q(w)R and R 6∈ Pw. In this
case, the statement trivially follows since πt(w) 6= R ∀t.

Assume, by induction, that the assertion holds for a given iteration j−1 of Greedy+. We now prove
that the same property is true for the paths that are deleted during iteration j. Again, during iteration
j, Greedy+ deletes a path P from P̄u at either Step i) or Step ii).

Deletion at Step i): It takes place if there exists v ∈ Vj−1 such that u ∈ peers(v) and λu((u v)P ′) <
λu(P), where {P ′} = P̄v. Observe that the induction hypothesis assures that previously deleted paths
are eventually discarded by r after time t′. Then, by the fairness of r, there must exist a time t′′ > t′

such that ∀t > t′′ (u v)P ′ ∈ choicest(u). This prevents u from selecting path P , i.e., πt(u) 6= P ∀t > t′′.
Deletion at Step ii): It takes place if P is inconsistent, i.e., P = Q(w)R and R 6∈ P̄w. By the induction

hypothesis, there exists t′ such that ∀t > t′ πt(w) 6= R. Then, by the fairness of r, u must receive a
message that withdraws the availability of R at a time t′′ > t′. Therefore, πt(u) 6= P ∀t > t′′.

Corollary 5.1. If Greedy+ terminates successfully on an instance S of Spvp, then S is safe and has
a unique solution.

Observe that Corollary 5.1 actually states that Greedy+ can be used as a centralized, deterministic
algorithm to efficiently emulate the behavior of Spvp in the long term, thus dealing with the non-
determinism that Spvp features. In our opinion, this property could be effectively exploited, e.g., by a
network administrator that wants to analyze how BGP will behave in his/her own network.

Given an instance S of Spvp, we say that a vertex v predictably selects path P if, for any fair run r
of Spvp on S, there exists a time t′ such that ∀t > t′ πt(v) = P . We say that v is predictable. Note that
0 is predictable by definition. The following lemma holds.

Lemma 5.1. If vertex v predictably selects P = (v u)Q, with Q possibly trivial, then u is predictable.

Proof. Suppose by contradiction that u is not predictable. Then, there exists at least one fair activation
sequence σ = (A0 A1 . . .) such that for any t′ there exists a t′′ > t′ such that πt′′(u) 6= Q. Consider

14

another activation sequence σ′ = (A′0 A
′
1 . . .) such that A′t = At ∀t 6= t′′+ 1 and A′t′′+1 = At′′+1 ∪ (u, v).

Then the trace π′ induced by σ′ cannot be such that π′t′′+1(v) = P , yielding a contradiction.

Observe that, by simply iterating Lemma 5.1, we can state that all vertices in a predictably selected
path are predictable.

Greedy+ and predictability are also related by the following property, which derives from Theo-
rem 5.1.

Property 5.1. Every vertex that Greedy+ puts in the stable set is predictable.

In the following we show that routing oscillations can only be triggered by a “special” class of dispute
wheels. The definition of this class is inspired by the deletion that is carried out at Step i) of Greedy+.

We say that a dispute wheel Π = (~U , ~Q, ~R) is a steady spoke dispute wheel (shortly, SSDW) if, for
every Qi = (ui vi)Pi, Π satisfies the following condition: ∀w ∈ peers(ui) such that w predictably selects
a path P ′, we have λui((ui w)P ′)) > λui(Qi). This condition means that the spoke path Qi is better
than any other path offered by predictable neighbors of ui.

We now provide a sufficient condition for safety which is strictly less constraining than the no dispute
wheel condition so many papers rely on (see Section 1). Note that this result is interesting given that, as
we showed in Section 3, the model we adopt is capable of capturing at least as many oscillations as the
other variants proposed in previous works (see Section 2).

Theorem 5.2. Let S be an instance of Spvp. If S contains no SSDW, then S is safe.

Proof. If S contains no SSDW then, either S does not contain any dispute wheels at all or S only contains
dispute wheels which are not SSDW. In the first case, the proof trivially stems from [9]. In the other
case, consider any dispute wheel Π = (~U , ~Q, ~R). For Π not to be a SSDW, it must be the case that,
for some vertex ui ∈ ~U with Qi = (ui vi)P , ∃w ∈ peers(ui) such that w predictably selects P ′ and
λui((ui w)P ′)) < λui(Qi). By definition of predictable vertex, for any fair activation sequence σ there
exists a t′ such that, for any t > t′: πt(w) = P ′. Hence, by the fairness of σ, there exists a t′′ > t′ such
that (ui w)P ′ ∈ choicest(ui) for any t > t′′ which, in turn, prevents ui from selecting Qi after t′′. Since
path Qi is no longer selected after t′′, the dispute wheel Π is prevented from oscillating.

The following lemma puts in better evidence the relevance of Theorem 5.2, by showing that our
sufficient condition for safety is able to capture a strictly larger set of safe instances.

Lemma 5.2. A SSDW is a dispute wheel. The converse does not hold.

Proof. The first part of the statement is trivial. The second part is supported by Di-safe-gree: in fact,
it is easy to see that there exists a dispute wheel Π = (~U , ~Q, ~R) where ~U = (2, 3), ~Q = ((2 0), (3 0)),
and ~R = ((2 3), (3 2)). However, Π is not a SSDW since 0 and 1 are predictable neighbors of 2 and
λ2(2 1 0) < λ2(2 0).

6 Conclusions and Open Problems

Several studies on BGP stability rely on a sufficient condition for guaranteed convergence that is based on
the absence of dispute wheels. We relax this sufficient condition by showing that only a particular subclass
of dispute wheels can actually trigger routing oscillations. The generality of our result is supported
by a thorough analysis on the ability of different models for path vector protocols to capture routing
oscillations. In our opinion, this result can contribute in making less constraining the previously proposed
sufficient conditions that rely on the absence of dispute wheels.

We also provide a deterministic polynomial time algorithm that can verify if an input BGP instance
is guaranteed to converge. Our algorithm can successfully check the guaranteed convergence of more
instances than the greedy algorithm in [9] does. We believe that this result can be used as a basis to
develop tools for automatically checking routing policies against oscillations. This is even more relevant
since the model we adopt can also be applied to IBGP configurations [14, 16, 21].

One obvious problem that remains open is filling the gap between sufficient and necessary conditions
for stability. While the necessary boundary is currently established in [5], this work narrows that gap
by moving the sufficient boundary one step further. Note that, as a side effect, our result introduces
another gap to be filled: the one between sufficient conditions for stability and those for robustness

15

(see, e.g., [6, 9, 16]). In fact, Di-safe-gree provides an example of instance in which the no SSDW
condition does not imply robustness. At present, the best known condition for robustness remains the no
dispute wheel one. Another open problem is how to relate our results to game theoretical models of BGP,
e.g., [19]. In particular, it would be interesting to apply our technique to enlarge the set of instances for
which a Nash equilibrium can be efficiently computed.

References

[1] Anindya Basu, Chih-Hao Luke Ong, April Rasala, F. Bruce Shepherd, and Gordon Wilfong. Route
oscillations in i-bgp with route reflection. In Proc. SIGCOMM, 2002.

[2] T. Bates, R. Chandra, and E. Chen. BGP Route Reflection - An Alternative to Full Mesh IBGP.
RFC 2796, 2000.

[3] Jorge Arturo Cobb, Mohamed G. Gouda, and Ravi Musunuri. A stabilizing solution to the stable
path problem. In Proc. Self-Stabilizing Systems, 2003.

[4] Cheng Tien Ee, Vijay Ramachandran, Byung-Gon Chun, Kaushik Lakshminarayanan, and Scott
Shenker. Resolving inter-domain policy disputes. In Proc. SIGCOMM, 2007.

[5] Nick Feamster, Ramesh Johari, and Hari Balakrishnan. Implications of autonomy for the expres-
siveness of policy routing. IEEE/ACM Trans. on Networking, 2007.

[6] Lixin Gao, Timothy Griffin, and Jennifer Rexford. Inherently safe backup routing with BGP. In
Proc. INFOCOM, 2001.

[7] Lixin Gao and Jennifer Rexford. Stable internet routing without global coordination. In Proc.
SIGMETRICS, 2000.

[8] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. Policy disputes in path-vector proto-
cols. In Proc. ICNP, 1999.

[9] Timothy G. Griffin, F. Bruce Shepherd, and Gordon Wilfong. The stable paths problem and inter-
domain routing. IEEE/ACM Trans. on Networking, 2002.

[10] Timothy G. Griffin and Joao Lúıs Sobrinho. Metarouting. In Proc. SIGCOMM, 2005.

[11] Timothy G. Griffin and Gordon Wilfong. An analysis of bgp convergence properties. In Proc.
SIGCOMM, 1999.

[12] Timothy G. Griffin and Gordon Wilfong. On the correctness of ibgp configuration. In Proc. SIG-
COMM, 2002.

[13] Timothy G. Griffin and Gordon T. Wilfong. A safe path vector protocol. In Proc. INFOCOM,
2000.

[14] Timothy G. Griffin and Gordon T. Wilfong. Analysis of the med oscillation problem in bgp. In
Proc. ICNP, 2002.

[15] Aaron D. Jaggard and Vijay Ramachandran. Robustness of class-based path-vector systems. In
Proc. ICNP, 2004.

[16] Aaron D. Jaggard and Vijay Ramachandran. Robust path-vector routing despite inconsistent route
preferences. In Proc. ICNP, 2006.

[17] Chi kin Chau. Policy-based routing with non-strict preferences. In Proc. SIGCOMM, 2006.

[18] Chi kin Chau, Richard Gibbens, and Timothy G. Griffin. Towards a unified theory of policy-based
routing. In Proc. INFOCOM, 2006.

[19] Hagay Levin, Michael Schapira, and Aviv Zohar. Interdomain routing and games. In Proc. STOC,
2008.

16

[20] Ravi Musunuri and Jorge Arturo Cobb. A complete solution for ibgp stability. In Proc. ICC, 2004.

[21] Anuj Rawat and Mark A. Shayman. Preventing persistent oscillations and loops in ibgp configuration
with route reflection. Computer Networks, 2006.

[22] Y. Rekhter, T. Li, and S. Hares. A Border Gateway Protocol 4 (BGP-4). RFC 4271, 2006.

[23] Joao Lúıs Sobrinho. Network routing with path vector protocols: Theory and applications. In Proc.
SIGCOMM, 2003.

[24] Joao Lúıs Sobrinho. An algebraic theory of dynamic network routing. IEEE/ACM Trans. on
Networking, 2005.

[25] Kannan Varadhan, Ramesh Govindan, and Deborah Estrin. Persistent route oscillations in inter-
domain routing. Computer Networks, 2000.

[26] Feng Wang, Zhuoqing Morley Mao, Jia Wang, Lixin Gao, and Randy Bush. A measurement study
on the impact of routing events on end-to-end internet performance. In Proc. SIGCOMM, 2006.

17

