
How to Extract BGP Peering Information
from the Internet Routing Registry∗

Giuseppe Di Battista
University of Roma Tre

gdb@dia.uniroma3.it

Tiziana Refice
University of Roma Tre

refice@dia.uniroma3.it

Massimo Rimondini
University of Roma Tre

rimondin@dia.uniroma3.it

ABSTRACT
We describe an on-line service, and its underlying method-
ology, designed to extract BGP peerings from the Inter-
net Routing Registry. Both the method and the service
are based on: a consistency manager for integrating infor-
mation across different registries, an RPSL analyzer that
extracts peering specifications from RPSL objects, and a
peering classifier that aims at understanding to what extent
such peering specifications actually contribute to fully de-
termine a peering. A peering graph is built with different
levels of confidence. We compare the effectiveness of our
method with the state of the art. The comparison puts in
evidence the quality of the proposed method.

Keywords
Internet Routing Registry, RPSL, BGP, Interdomain Rout-
ing, Policies.

1. INTRODUCTION
The Internet Routing Registry (IRR) [11, 6] is a large dis-

tributed repository of information, containing the routing
policies of many of the networks that compose the Internet.
The IRR was born about ten years ago with the main pur-
pose to promote stability, consistency, and security of the
global Internet routing. It consists of several registries that
are maintained on a voluntary basis. The routing policies
are expressed in the Routing Policy Specification Language
(RPSL) [12, 18, 13]. The IRR can be used by operators to
look up peering agreements, to study optimal policies, and
to (possibly automatically) configure routers.

There is a wide discussion about the current role of the
IRR [21]. Some people consider it outdated and almost use-

∗Work partially supported by European Commission - Fet
Open project DELIS - Dynamically Evolving Large Scale
Information Systems - Contract no 001907 and by the Miur
Project ALGO-NEXT: Algorithms for the Next Genera-
tion Internet and Web: Methodologies, Design, and Exper-
iments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’06 Workshops September 11-15, 2006, Pisa, Italy.
Copyright 2006 ACM 1-59593-417-0/06/0009 ...$5.00.

less. Others have put in evidence its importance to un-
derstand the Internet routing and that it contains unique
and significant information. Anyway, it is undeniable that
the IRR keeps on being fed by many operators, that useful
tools have been developed to deal with the IRR (see, e.g.,
IRRToolSet [3]), and that several research issues on the In-
ternet routing are, at least partially, based on the content of
the IRR. However, as pointed out in [21], extracting informa-
tion from the IRR is far from trivial: the policies written in
RPSL can be quite complex, the level of accuracy of the de-
scriptions largely varies, and, also because of its distributed
nature, the IRR contains many inconsistencies [16].

The purpose of this paper is to describe an on-line service,
and its underlying methodology, that extracts BGP peerings
from the IRR. We believe that our service can have beneficial
effects both for operators and for several research projects.

For example, the RIPE offers an IRR consistency check
service (RRCC) [20, 10] that aims at detecting unregistered
peerings. It verifies whether a peering that can be inferred
from operational routing data is also described, in some
form, into the IRR. We will show later that currently the
RIPE service extracts peerings from the IRR in a way that
is much less accurate than the one presented in this paper.
Actually, the need of a better analysis of the content of the
IRR is pointed out by the RIPE itself that considers this as
a long term goal [10].

On the research side, Mahadevan et al. [17] presented a
comparison of several characteristics of the AS-level topolo-
gies built on the basis of different data sources, including
the IRR. They also proposed a metric to characterize such
topologies. Zhang et al. [22] derived an AS-level topology
combining IRR data with BGP routing information col-
lected from multiple sources, such as RouteViews [5], look-
ing glasses, and route servers. They showed that the data
from the RIPE registry reveal topology information which
cannot be found in other sources. Siganos et al. [21] devel-
oped a tool, called Nemecis [4], that checks the correctness of
IRR data and their consistency with respect to BGP routing
table information. They argued that 28% of ASes have both
correct and consistent policies and that RIPE is by far the
most accurate registry. Carmignani et al. [14] presented a
service for the visualization of IRR data. We shall compare
the level of accuracy of the methods for extracting peerings
from the IRR used in the above papers with respect to ours.

The main results presented in this paper can be summa-
rized as follows.
• We describe a method and a on-line service to extract

peering relationships from the IRR. Both the method and

the service are based on: a consistency manager for integrat-
ing information across different registries, an RPSL analyzer
that extracts peering specifications from RPSL objects, and
a peering classifier that aims at understanding to what ex-
tent such peering specifications actually contribute to fully
determine a peering. A peering graph is built with different
levels of confidence.
• We show that the accuracy of our analysis of RPSL

policies allows to discover many more peerings than the state
of the art.
• We provide an implementation of our method as an on-

line service, available at
http://tocai.dia.uniroma3.it/~irr_analysis.
• As a side effect, our study highlights how the different

RPSL constructions are actually used to specify peerings.
The paper is organized as follows. Section 2 provides an

overview of the IRR and of RPSL. In Section 3 we present
our methodology and the system we developed to extract
peering information from RPSL data. We use our system
to analyze the data set specified in Section 4. The prob-
lems arising from the use of several registries are faced in
Section 5. We explain in Section 6 how the peerings are
discovered. Section 7 shows how to build a topology based
on the data we extract. A quantitative comparison with the
state of the art is done in Section 8. Future work is described
in Section 9.

2. BACKGROUND
The Internet is divided into tens of thousands of admin-

istrative domains called Autonomous Systems (AS), each
usually adopting a unique routing protocol and consistent
routing policies. An AS is identified by a number. The
Border Gateway Protocol (BGP) [19] is the routing proto-
col used to exchange reachability information between ASes.
BGP allows to define complex routing policies that affect
the propagation of BGP announcements. Two ASes that
exchange routing information using BGP are said to have
a peering between them (the term “peering” is always used
with this meaning throughout the paper). The ASes which
have a peering with an AS A are termed peerers of A.

There are many publicly available registries that describe
both the allocation of Internet resources and BGP rout-
ing policies. The Regional Internet Registries [15] (e.g.,
RIPE [8], ARIN [1]) are in charge of maintaining informa-
tion over wide geographic regions. The Local Internet Reg-

istries (e.g., VERIO, LEVEL3) describe the policies of the
customers of a specific ISP. Taken together, all these reg-
istries form the Internet Routing Registry (IRR). The main
purpose of the IRR is to support a consistent global configu-
ration of routing policies. It is also possible to automatically
create BGP filters and router configurations from registry
information by using tools such as IRRToolSet [3].

The registration and maintenance of routing policies are
performed on a voluntary basis by network operators, who
may register such policies at one or more registries. As a
consequence, information therein may be incorrect, incom-
plete, or outdated. Indeed, some large ISPs and Internet
Exchange Points rely on the IRR for route filtering and do
not allow their customers to participate in BGP routing un-
less they document their routing policies in a registry.

The routing policies stored in the IRR are described using
the Routing Policy Specification Language (RPSL) [12, 18]
or its more recent variant RPSLng [13], which introduces

support to both multicast and IPv6. RPSL is an object-
oriented language that defines 13 classes of objects. Routing
policies are described in the import, export, and default

attributes of aut-num objects. In turn, aut-nums may ref-
erence other objects that contribute to the specification of
the policies, such as as-sets and peering-sets.

What follows is a portion of an RPSL aut-num object
from the RIPE registry which describes the routing poli-
cies of AS137 (last updated 08/30/00). The portion of the
import (export) attribute following the from (to) keyword
is a very simple example of peering specification. The ob-
ject indicates that AS137 accepts any route sent to it by
AS20965 and by AS1299 and propagates to AS1299 all the
routes originated by ASes belonging to the as-set named
AS-GARR (an as-set is an RPSL object that specifies a
set of ASes). This implies that AS137 has a peering with
AS20965 and AS1299.

aut-num: AS137

import: from AS20965 action pref=100;

from AS1299 action pref=100;

accept ANY

[...]

export: to AS1299 announce AS-GARR

[...]

changed: noc@garr.it 20000830

source: RIPE

In our service we make use of Peval, a low level policy eval-
uation tool conceived to write router configuration genera-
tors. Peval is part of the Internet Routing Registry Toolset

(IRRToolSet) [3] suite. Peval takes as input an RPSL ex-
pression and evaluates it by applying RPSL set operators
(AND, OR, NOT) and by expanding as-sets, route-sets, and
AS numbers into the corresponding sets of prefixes. Alter-
natively, Peval can stop the expansion at the level of ASes.
We access the IRR data also through the Internet Routing

Registry Daemon (IRRd) [2], a freely available stand-alone
IRR database server supporting both RPSL and RPSLng.

3. A PEERING EXTRACTION SERVICE
Our method for extracting peerings has been implemented

and is available as an on-line service at
http://tocai.dia.uniroma3.it/~irr_analysis. The ser-
vice produces, on a daily basis: (i) General statistics on the
IRR (number of objects defined in each registry, amount of
overlapping information between registries, etc.). (ii) A set
of pairs of ASes, corresponding to peering relationships ex-
tracted from the IRR. Each pair is labeled with information
about the context where it has been found, like the type
of policy and the registry. In developing the service, we
attempted to limit the possible failures by assuming strict
adherence of RPSL policies to [12, 13]. The architecture of
the service is composed by the following main blocks.

Basic Info Registry Analyzer: provides preliminary
information on the registries. For example, it computes the
number of aut-nums and as-sets inside each registry. Also,
it computes the “amount of overlap” between pairs of reg-
istries. Further, it deals with the evolution over time of
registries, measuring the number of everyday updates. Such
basic information is useful for giving a correct interpretation
of the results obtained by using the service.

Inter-Registry Consistency Manager: starting from
a set of registries that, considered as a whole, may contain

Table 1: aut-num objects inside non-void registries before and after resolving inter-registry inconsistencies.
ripe 11468 92% bell 74 98% risq 8 100% digitalrealm 4 100% panix 1 0%
apnic 3299 84% aoltw 53 3% crc 8 62% look 3 100% openface 1 100%
radb 2695 77% jpirr 43 34% deru 7 0% retina 2 50% koren 1 100%
arin 555 41% sinet 28 10% sprint 6 16% reach 2 50% gts 1 100%
verio 498 42% arcstar 16 6% bcnet 5 60% nestegg 2 100% gt 1 100%
dodnic 254 11% chtr 11 0% vdn 4 25% gw 2 100% fastvibe 1 100%
altdb 249 63% host 10 90% rgnet 4 100% bendtel 2 50% eicat 1 100%
savvis 180 75% ottix 9 33% mto 4 25% univali 1 100% ebit 1 100%
epoch 137 100% csas 9 100% easynet 4 100% soundinternet 1 100% area151 1 100%
level3 126 40% rogers 8 100%

inconsistent information, constructs a purged new consis-
tent version of the IRR. RPSL objects with the same key
appearing in different registries are compared. A choice is
done relying on the timestamp of the last change and in
terms of the semantics of the attributes.

RPSL Peering Specification Analyzer: extracts from
the IRR the peering relationships between ASes. This is
done by analyzing the body of RPSL objects. The relation-
ships extracted in this phase are candidate peerings for the
subsequent elaboration. In this step we also evaluate the
current usage of the RPSL syntax constructions for express-
ing peerings. This block exploits IRRd and Peval.

Peering Classifier: classifies the computed candidate
peerings according to their relative matchings in order to
understand to what extent they contribute to fully specify
a peering. The output of this step is a peering graph, that
can be constructed with different levels of confidence.

The above blocks will be detailed in the following sections.

4. DATA SET
The registry data we use throughout this paper has been

downloaded from [9, 7] on 03/31/06. At that time there
were 68 registries available for download, which are listed in
Table 1. The registries are sorted according to their size in
terms of number of aut-num objects registered inside them
(2nd column). Void registries are omitted.

Table 2 indicates the level of overlapping between the
largest registries. For each pair of registries (Ri1 , Ri2) the
table provides the number of aut-num objects that are reg-
istered both in Ri1 and in Ri2 . The main diagonal (Ri, Ri)
reports the count of aut-nums appearing in registry Ri only.

Figure 1 gives an idea of the amount of work of the op-
erators on the IRR over time. Namely, it shows the daily
percentage of size variation of the RIPE registry (that is by
far the most popular) over the period 11/14/05–04/26/06.
The plot shows that the RIPE registry keeps on being up-
dated on a regular basis and that it grows of about 2% per
month. Our reference date (arrow in the plot) has been
selected to be one with an average number of updates.

5. INTEGRATING REGISTRIES
RFC 2622 [12] considers the IRR system as a whole. How-

ever, the IRR is composed by several registries, and the
same object may be defined in many of them. For exam-
ple, in our data set, AS2510 is registered both in APNIC
and in JPIRR. Of course, the presence of multiple defini-
tions of the same object can lead to inconsistencies. Our
Inter-Registry Consistency Manager takes care of resolving

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

11
/1

4/
20

05

11
/2

1/
20

05

11
/2

8/
20

05

12
/0

5/
20

05

12
/1

2/
20

05

12
/1

9/
20

05

12
/2

6/
20

05

01
/0

2/
20

06

01
/0

9/
20

06

01
/1

6/
20

06

01
/2

3/
20

06

01
/3

0/
20

06

02
/0

6/
20

06

02
/1

3/
20

06

02
/2

0/
20

06

02
/2

7/
20

06

03
/0

6/
20

06

03
/1

3/
20

06

03
/2

0/
20

06

03
/2

7/
20

06

04
/0

3/
20

06

04
/1

0/
20

06

04
/1

7/
20

06

04
/2

4/
20

06

% of variation in size (RIPE)

Figure 1: Daily growth of the RIPE registry.

Table 2: Overlapping aut-nums between registries.
apnic arin radb ripe verio

apnic 2688 1 423 19 113
arin 1 463 37 7 14
radb 423 37 2037 50 45
ripe 19 7 50 11238 23
verio 113 14 45 23 310

them. It takes as input a set of registries and processes
them in order to build a new repository where each RPSL
object is defined only once. Whenever it detects for a certain
RPSL object the presence of multiple definitions (possibly
coming from different registries), it examines all the defi-
nitions in order to determine which of them contains the
most significant information. Such definition is kept in the
final repository, while all the others are discarded. In what
follows, a triple (x;y;z) represents a number of aut-nums,
as-sets, peering-sets, respectively. In our data set we
have (19,800;7,798;149) overall definitions. Among them,
(18,735;7,478;149) are unique. Hence, potential inconsisten-
cies affect at most (1,065;300;0) objects.

If an RPSL object is defined multiple times, the most
informative definition is selected. We call stub object an
aut-num object which misses information about BGP poli-
cies or a set object which misses the specification of the set
members (consider that some attributes of RPSL objects are
optional). Operators sometimes use stub objects as “place-
holders” which can be referred to inside other parties’ BGP

policies. Our data set contains (3,133;206;11) stub defini-
tions. If we detect that an object appears in more than one
registry, we discard its stub instances. Since stub objects do
not provide useful data about the existence of peerings, this
does not cause any loss of information.

However, it may still be the case that several registries
contain non-stub instances of a single RPSL object. If this
happens, we select the instance with the most recent update
timestamp, that is contained in the changed attribute. Af-
ter removing the stub definitions and selecting the most re-
cent timestamp, the potential inconsistencies affect at most
(44;77;0) objects. Note that, even if the changed attribute
is optional, in our data set there is only one definition that
misses the timestamp over 2,271,446 objects in the IRR.

Yet, if there are (at least) two instances with the same
most recent date, we select the definition belonging to the
registry with highest rank. We rank the registries according
to their size. This choice is somehow arbitrary. However,
a registry with a higher number of objects often provides
more reliable information than the others. Also, as shown
above, the choice impacts very few objects. Last, we have
inspected the objects that have multiple definitions with the
most recent date and discovered that in most cases their def-
initions coincide. Of course, other rankings could be applied
without impacting the general structure of the method.

The third column of Table 1 shows the percentage of the
remaining aut-num objects per registry after running the
Inter-Registry Consistency Manager. It is interesting to ob-
serve that RIPE has the highest absolute number and the
highest percentage among the top 5 registries.

6. DISCOVERING PEERINGS THROUGH
RPSL ANALYSIS

In this section we detail the procedure we apply to extract
peering information from RPSL data. As already stated
in Section 2, peering specifications may only appear in the
[mp-]import, [mp-]export, and [mp-]default attributes of
aut-num objects. Hence, aut-nums are the starting points of
the peering extraction.

What follows is a fragment (25 lines, ASX1-ASX13 repre-
sent ASes) of RPSL code that puts in evidence many of the
problems encountered while discovering peerings in the IRR.
We now show how to extract from it the peerers of ASX5.

By scanning this code with the RIPE RRCC scripts [10],
the following peerers are found: ASX1, ASX3, ASX12, ASX13.
They come out by examining lines 17, 19 (import from), 24,
25 (default to). However, such peerings are neither cor-
rect nor complete. On one hand, the peering between ASX5

and ASX1 does not hold, since the refine semantics require
to compute the intersection between ASX2:AS-Z2 and ASes
ASX1, ASX2. On the other hand, there are peerers of ASX5

that have not been discovered. The peerers ASX6 and ASX7

can be inferred only by considering all the ASes that belong
to the peering-set used at line 20 and defined at lines 1-5.
Further, the peerers ASX8 and ASX10 can be inferred only by
considering all the ASes that belong to the as-set used at
line 21 and defined at lines 6-8,11-13. Finally, the peerers
ASX2 and ASX11 are not discovered because the scripts in [10]
support neither multiple peerings in the same from expres-
sion, nor the mp-export attribute. Even if the example is
not taken from the real life IRR, it is a patchwork of pieces
of code that are quite common in RPSL objects.

1. peering-set: ASX1:PRNG-Y1 4. peering-set: PRNG-Y2

2. peering: PRNG-Y2 5. peering: ASX7

3. peering: ASX6

6. as-set: ASX1:AS-Z1 9. as-set: ASX2:AS-Z2

7. members: ASX8, ASX9 10. members: ASX2, ASX4

8. mbrs-by-ref: MNTR-ASX1

11. aut-num: ASX10

12. member-of: ASX1:AS-Z1

13. mnt-by: MNTR-ASX1

14. aut-num: ASX5

15. import: { from ASX2:AS-Z2 accept 100.0.0.0/8;

16. } refine {

17. from ASX1 ASX2 accept 100.1.0.0/16;

18. } except {

19. from ASX3 accept 100.1.1.0/24;}

20. export: to ASX1:PRNG-Y1

21. to ASX1:AS-Z1 except ASX9

22. announce 100.1.1.0/24

23. mp-export: to ASX11 at 2001::1 announce 2001::/48

24. default: to ASX12 action pref=10

25. default: to ASX13 100.1.1.1 at 100.1.1.2

We now show our method for extracting peerings from the
RPSL code. We describe how we build a set of candidate
peerings, which we use later to identify peerings.

For each aut-num object A we compute the sets import(A),
export(A), and default(A) of candidate peerers correspond-
ing to the [mp-]import, [mp-]export, and [mp-]default

attributes, respectively. We describe our procedure with
reference to the import attributes. The other attributes are
processed in a similar way. If A defines a private AS, it is
discarded (it should not be visible in the Internet).

An import attribute may contain a simple or a structured
policy. A simple import policy may contain several peering
specifications. In this case import(A) is the union of the can-
didate peerers corresponding to such peering specifications.
If a peering specification is a peering-set, it is recursively
expanded into its members. If it involves information about
routers (e.g., interfaces, inet-rtrs, rtr-sets), they are re-
moved. We keep only AS names, as-set names, set oper-
ators, and the keyword AS-ANY. The resulting expression is
evaluated by using Peval. The output of Peval, consisting
of a set of ASes, contributes to the set of candidate peerers.

A structured policy is a policy that has except and/or
refine operators. In this case, import(A) is still the union
of several candidate peerers, but such candidate peerers are
determined in a different way. First, we extract the two ar-
guments of the except (refine) operator, which are simple
policies. Then, we process such policies as above, thus ob-
taining two sets of peerers. The union (intersection) of these
two sets is our set of candidate peerers. If there are multiple
except/refine expressions, we process them iteratively.

If an aut-num has many import attributes the above pro-
cedure is repeated for each one.

Finally, private ASes in import(A) are removed.
Some technical issues should be pointed out. For exam-

ple, a peering specification may contain the AS-ANY key-
word. AS-ANY is either used “alone” (e.g. import: ...

from AS-ANY ...) or in a structured policy. In the first
case one could argue that there is an AS that has a peering
with all the other ASes, which is clearly unrealistic. Hence,

Table 3: Incidence of different RPSL constructions in the specification of peerings. (*): an [mp-]import, an
[mp-]export, or an [mp-]default policy.

aut-num objects Action Uses Peval Occurrences

having a default attribute Supported No 4,851
having an mp-import, an mp-export, or an mp-default attribute Supported No 220
having a peering-set object in (*) Supported No 16
having an as-set object in (*) Supported Yes 939
having AS-ANY in (*) without further specifications Discarded No 660
having AS-ANY in (*) within a refine expression Supported No 24
having an and, an or, a not, or an except operator in (*) Supported Yes 5
having a refine or except expression in (*) Supported No 29
registering a private AS Discarded No 1

Private ASes in (*) Discarded No 86

inet-rtr objects having peer attributes Discarded No 217

Table 4: Peering candidates per registry.
ripe 342995 arin 1233 dodnic 389 ottix 38 bcnet 18 area151 14 digitalrealm 8
verio 118999 altdb 1068 gt 219 jpirr 38 look 16 openface 10 univali 6
radb 19309 bell 974 rogers 134 csas 36 eicat 15 bendtel 10 gts 2
apnic 13979 fastvibe 968 host 79 retina 22 nestegg 14 soundinternet 8 easynet 2
reach 9402 level3 558 risq 67 crc 22 mto 14 gw 8 aoltw 2
savvis 1593 epoch 439 sinet 50

in this case we discard the peering specification. Else, if
AS-ANY is used inside a structured policy, we apply the above
algorithm. Last, observe that inet-rtr objects too may
contain information about peerings. However, we do not
consider such peerings meaningful unless they appear in an
[mp-]import, [mp-]export, or [mp-]default attribute of
an aut-num.

Table 3 shows the incidence of RPSL constructions in the
specification of peerings, while Table 4 shows the number of
peering candidates extracted from the registries.

7. CONSTRUCTING A PEERING GRAPH
Once a peering candidate has been extracted from the

IRR, it is classified according to the following two categories.
Let A and B be the two ASes participating in the peering

candidate. A
E
−→ B represents the fact that A registered

an export policy allowing BGP announcements to be sent

to B. In turn, A
I
−→ B indicates that B registered a policy

according to which B accepts incoming announcements from
A. The peering candidates are also tagged with the registries
from which they have been extracted.

At this point, the peering candidates are used to deter-
mine whether there actually is a peering between two ASes.
For example if, for two ASes A and B, we have found four

peering candidates of type A
E
−→ B, A

I
−→ B, A

E
←− B,

A
I
←− B, it means that both A and B have fully considered

their partner in the peering. Hence, we call this peering “full
peering” (A—B). Of course, there can be cases when the
policies describe a peering only partially. For example, we

might have only A
E
−→ B, A

I
−→ B, in which case the an-

nouncements from A to B are described in the policies, while
there is no evidence of policies allowing announcements from

B to A. We call this situation “half peering” (A
1/2

— B).
Table 5 shows all the possible relationships between two

ASes. The column Peering Type associates a symbol to

each possible situation. The column # of Peerings counts
the peerings of each category. The column Single Registry
reports the percentage of cases where all the candidate peer-
ings contributing to the peering are in a single registry. We
detail such percentage for the RIPE registry. A self peering
refers to an AS that registers a peering with itself.

The peering types of Table 5 can be used to construct
Internet topologies with different levels of confidence.

8. COMPARISON WITH PREVIOUS WORK
In order to compare the peerings discovered with our tech-

niques with those discovered with previous approaches we
ran on the same data set we used in our experiments the
piece of code that RIPE uses for peering extraction in the
RRCC service [20, 10]. The peerings obtained in such a way
can be considered analogous to our peering candidates. By
using the RIPE code we obtained 295,587 RRCC peering

candidates, that are much less than our overall amount of
512,758 peering candidates (see Tab. 4). By aggregating the
RRCC peering candidates with the method of Section 7 we
obtained 108,521 RRCC peerings. Again, much less than
our 236,663 peerings (see Tab. 5). Further, there are 102
RRCC peerings that we did not find. We discovered that
100 of them involve private ASes and the remaining 2 come
from an incorrect processing of the RRCC code of the and

operator. A comparison with [14] gave similar results.
Comparing our results with the ones presented in [17, 22,

21] is not easy. In fact, they refer to the versions of the
IRR of 04/07/04, 10/24/04, and 06/22/03, respectively. To
the best of our knowledge, no repository is available with
IRR historical data. We have a repository of such data
in the interval described in Fig. 1 but, unfortunately, such
interval does not cover the above dates. The authors of [17]
provide the peerings extracted from the IRR on 04/07/04.
The work in [22] is supported by a Web site providing several
files of peerings. It is updated on a daily basis, yet the

Table 5: Classification of the peerings discovered in the IRR
Policy Type

Peering Type # of Peerings Single Registry RIPE Only
A

E
−→ B A

I
−→ B A

E
←− B A

I
←− B

√ √ √ √
A ——— B 42,599 96,7% 94.6%

√ √ √
A

3/4¬E
——— B 1,373 84.6% 80.3%

√ √ √
A

3/4¬I
——— B 1,013 88.8% 82.2%

√
A

1/4E
——— B 34,155 100% 7.7%

√
A

1/4I
——— B 13,997 100% 23.7%

√ √
A

1/2

——— B 114 90.4% 57.9%
√ √

A
1/2E

——— B 19 78.9% 47.4%
√ √

A
1/2AB
——— B 143,342 100% 58.4%

√ √
A

1/2I
——— B 51 72.5% 66.7%

Total (including Self-Peerings) 236,663
Self-Peerings 195

peerings discovered in the IRR are unavailable. Also the
work in [21] has a Web site [4] that allows to interactively
explore the peerings detected on 11/08/05. Again, this date
is not covered by our archives.

Hence, only a rough comparison is possible. The topol-
ogy of [17] reports 56,973 peerings while [22] reports the
discovery of 70,222 peerings. Both refer to the RIPE reg-
istry only. Paper [21] reports 127,498 peerings referred to
the entire IRR. All such figures are very far from our results.

The above results, together with the data extracted by the
on-line service over a period of two months, support the ef-
fectiveness of our peering extraction methodology compared
to the state of the art.

9. FUTURE WORK
We think that the data contained into the IRR are a

unique source of valuable information and therefore con-
sider the results presented in this paper as a starting point
and a necessary premise for future research on the topic.
The availability of an effective peering extraction technique
opens, at least, the following perspectives.

We intend to compare the peerings extracted by our ser-
vice against actual routing data. We can even study how
BGP announcements would spread over the Internet accord-
ing to the policies registered in the IRR. This would give a
better estimate of the consistency of IRR data and would
bring about the opportunity of performing specific actions
on the IRR to improve its consistency. One could even em-
ulate the entire (or a significant portion of) Internet by con-
figuring virtual routers with the policies documented in the
IRR. We believe this could be of great help in understanding
the behaviour of the Internet and in forecasting, preventing,
or debugging abnormal or unsafe routing scenarios.

10. REFERENCES
[1] ARIN. http://www.arin.net/.

[2] IRRd. http://www.irrd.net/.

[3] IRRToolSet.
http://www.isc.org/index.pl?/sw/IRRToolSet/.

[4] Nemecis. http://ira.cs.ucr.edu:8080/Nemecis/.

[5] Oregon Route Views Project.
http://www.routeviews.org/.

[6] Overview of the IRR.
http://www.irr.net/docs/overview.html.

[7] RADB db. ftp://ftp.radb.net/radb/dbase/.

[8] RIPE. http://www.ripe.net/.

[9] RIPE db. ftp://ftp.ripe.net/ripe/dbase/.

[10] RRCC. http://www.ripe.net/projects/rrcc/.

[11] The Internet Routing Registry: History and Purpose.
http://www.ripe.net/db/irr.html.

[12] C. Alaettinoglu, C. Villamizar, E. Gerich, D. Kessens,
D. Meyer, T. Bates, D. Karrenberg, and M. Terpstra.
Routing Policy Specification Language (RPSL). IETF
RFC 2622, 1999.

[13] L. Blunk, J. Damas, F. Parent, and A. Robachevsky.
Routing Policy Specification Language next
generation (RPSLng). IETF RFC 4012, 2005.

[14] A. Carmignani, G. D. Battista, W. Didimo,
F. Matera, and M. Pizzonia. Visualization of the High
Level Structure of the Internet with Hermes. J. of

Graph Algorithms and Applications, 2002.

[15] D. Karrenberg, G. Ross, P. Wilson, and L. Nobile.
Development of the Regional Internet Registry
System. Internet Protocol J., 2001.

[16] S. Kerr. RIPE DB Inconsistencies. RIPE 43, 2002.

[17] P. Mahadevan, D. Krioukov, M. Fomenkov,
B. Huffaker, X. Dimitropoulos, kc claffy, and
A. Vahdat. The Internet AS-Level Topology: Three
Data Sources and One Definitive Metric. ACM

SIGCOMM Computer Communication Review, 2006.

[18] D. Meyer, J. Schmitz, C. Orange, M. Prior, and
C. Alaettinoglu. Using RPSL in Practice. IETF RFC
2650, 1999.

[19] Y. Rekhter, T. Li, and S. Hares. A Border Gateway
Protocol 4 (BGP-4). IETF RFC 4271, 2006.

[20] J. Schmitz, E. Gunduz, S. Kerr, A. Robachevsky, and
J. L. S. Damas. Routing Registry Consistency Check.
RIPE Document 201, 2001.

[21] G. Siganos and M. Faloutsos. Analyzing BGP Policies:
Methodology and Tool. In IEEE INFOCOM, 2004.

[22] B. Zhang, R. Liu, D. Massey, and L. Zhang. Collecting
the Internet AS-level topology. ACM SIGCOMM

Computer Communication Review, 2005.

